Metamath Proof Explorer


Theorem aibnbna

Description: Given a implies b, (not b), there exists a proof for (not a). (Contributed by Jarvin Udandy, 1-Sep-2016)

Ref Expression
Hypotheses aibnbna.1 ( 𝜑𝜓 )
aibnbna.2 ¬ 𝜓
Assertion aibnbna ¬ 𝜑

Proof

Step Hyp Ref Expression
1 aibnbna.1 ( 𝜑𝜓 )
2 aibnbna.2 ¬ 𝜓
3 2 1 mto ¬ 𝜑