Metamath Proof Explorer


Theorem aiffbbtat

Description: Given a is equivalent to b, b is equivalent to T. there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016)

Ref Expression
Hypotheses aiffbbtat.1 ( 𝜑𝜓 )
aiffbbtat.2 ( 𝜓 ↔ ⊤ )
Assertion aiffbbtat ( 𝜑 ↔ ⊤ )

Proof

Step Hyp Ref Expression
1 aiffbbtat.1 ( 𝜑𝜓 )
2 aiffbbtat.2 ( 𝜓 ↔ ⊤ )
3 1 2 bitri ( 𝜑 ↔ ⊤ )