Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
aiffnbandciffatnotciffb
Metamath Proof Explorer
Description: Given a is equivalent to (not b), c is equivalent to a, there exists a
proof for ( not ( c iff b ) ). (Contributed by Jarvin Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
aiffnbandciffatnotciffb.1
⊢ ( 𝜑 ↔ ¬ 𝜓 )
aiffnbandciffatnotciffb.2
⊢ ( 𝜒 ↔ 𝜑 )
Assertion
aiffnbandciffatnotciffb
⊢ ¬ ( 𝜒 ↔ 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
aiffnbandciffatnotciffb.1
⊢ ( 𝜑 ↔ ¬ 𝜓 )
2
aiffnbandciffatnotciffb.2
⊢ ( 𝜒 ↔ 𝜑 )
3
2 1
bitri
⊢ ( 𝜒 ↔ ¬ 𝜓 )
4
xor3
⊢ ( ¬ ( 𝜒 ↔ 𝜓 ) ↔ ( 𝜒 ↔ ¬ 𝜓 ) )
5
3 4
mpbir
⊢ ¬ ( 𝜒 ↔ 𝜓 )