Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
aifftbifffaibifff
Metamath Proof Explorer
Description: Given a is equivalent to T., Given b is equivalent to F., there exists a
proof for that a iff b is false. (Contributed by Jarvin Udandy , 7-Sep-2020)
Ref
Expression
Hypotheses
aifftbifffaibifff.1
⊢ ( 𝜑 ↔ ⊤ )
aifftbifffaibifff.2
⊢ ( 𝜓 ↔ ⊥ )
Assertion
aifftbifffaibifff
⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ⊥ )
Proof
Step
Hyp
Ref
Expression
1
aifftbifffaibifff.1
⊢ ( 𝜑 ↔ ⊤ )
2
aifftbifffaibifff.2
⊢ ( 𝜓 ↔ ⊥ )
3
1
aistia
⊢ 𝜑
4
2
aisfina
⊢ ¬ 𝜓
5
3 4
abnotbtaxb
⊢ ( 𝜑 ⊻ 𝜓 )
6
5
axorbtnotaiffb
⊢ ¬ ( 𝜑 ↔ 𝜓 )
7
nbfal
⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ↔ 𝜓 ) ↔ ⊥ ) )
8
7
biimpi
⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ⊥ ) )
9
6 8
ax-mp
⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ⊥ )