Metamath Proof Explorer


Theorem aifftbifffaibifff

Description: Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a iff b is false. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypotheses aifftbifffaibifff.1 ( 𝜑 ↔ ⊤ )
aifftbifffaibifff.2 ( 𝜓 ↔ ⊥ )
Assertion aifftbifffaibifff ( ( 𝜑𝜓 ) ↔ ⊥ )

Proof

Step Hyp Ref Expression
1 aifftbifffaibifff.1 ( 𝜑 ↔ ⊤ )
2 aifftbifffaibifff.2 ( 𝜓 ↔ ⊥ )
3 1 aistia 𝜑
4 2 aisfina ¬ 𝜓
5 3 4 abnotbtaxb ( 𝜑𝜓 )
6 5 axorbtnotaiffb ¬ ( 𝜑𝜓 )
7 nbfal ( ¬ ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ↔ ⊥ ) )
8 7 biimpi ( ¬ ( 𝜑𝜓 ) → ( ( 𝜑𝜓 ) ↔ ⊥ ) )
9 6 8 ax-mp ( ( 𝜑𝜓 ) ↔ ⊥ )