Metamath Proof Explorer


Theorem ainaiaandna

Description: Given a, a implies it is not the case a implies a self contradiction. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypothesis ainaiaandna.1 𝜑
Assertion ainaiaandna ( 𝜑 → ¬ ( 𝜑 → ( 𝜑 ∧ ¬ 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 ainaiaandna.1 𝜑
2 1 atnaiana ¬ ( 𝜑 → ( 𝜑 ∧ ¬ 𝜑 ) )
3 2 a1i ( 𝜑 → ¬ ( 𝜑 → ( 𝜑 ∧ ¬ 𝜑 ) ) )