Metamath Proof Explorer


Theorem aisbnaxb

Description: Given a is equivalent to b, there exists a proof for (not (a xor b)). (Contributed by Jarvin Udandy, 28-Aug-2016)

Ref Expression
Hypothesis aisbnaxb.1 ( 𝜑𝜓 )
Assertion aisbnaxb ¬ ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 aisbnaxb.1 ( 𝜑𝜓 )
2 1 notnoti ¬ ¬ ( 𝜑𝜓 )
3 df-xor ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
4 2 3 mtbir ¬ ( 𝜑𝜓 )