Description: Given a is equivalent to F. , there exists a proof for not a. (Contributed by Jarvin Udandy, 30-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | aisfina.1 | ⊢ ( 𝜑 ↔ ⊥ ) | |
Assertion | aisfina | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aisfina.1 | ⊢ ( 𝜑 ↔ ⊥ ) | |
2 | nbfal | ⊢ ( ¬ 𝜑 ↔ ( 𝜑 ↔ ⊥ ) ) | |
3 | 1 2 | mpbir | ⊢ ¬ 𝜑 |