Metamath Proof Explorer


Theorem aisfina

Description: Given a is equivalent to F. , there exists a proof for not a. (Contributed by Jarvin Udandy, 30-Aug-2016)

Ref Expression
Hypothesis aisfina.1 ( 𝜑 ↔ ⊥ )
Assertion aisfina ¬ 𝜑

Proof

Step Hyp Ref Expression
1 aisfina.1 ( 𝜑 ↔ ⊥ )
2 nbfal ( ¬ 𝜑 ↔ ( 𝜑 ↔ ⊥ ) )
3 1 2 mpbir ¬ 𝜑