Metamath Proof Explorer


Theorem aistbisfiaxb

Description: Given a is equivalent to T., Given b is equivalent to F. there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016)

Ref Expression
Hypotheses aistbisfiaxb.1 ( 𝜑 ↔ ⊤ )
aistbisfiaxb.2 ( 𝜓 ↔ ⊥ )
Assertion aistbisfiaxb ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 aistbisfiaxb.1 ( 𝜑 ↔ ⊤ )
2 aistbisfiaxb.2 ( 𝜓 ↔ ⊥ )
3 1 aistia 𝜑
4 2 aisfina ¬ 𝜓
5 3 4 abnotbtaxb ( 𝜑𝜓 )