Metamath Proof Explorer


Theorem aistia

Description: Given a is equivalent to T. , there exists a proof for a. (Contributed by Jarvin Udandy, 30-Aug-2016)

Ref Expression
Hypothesis aistia.1 ( 𝜑 ↔ ⊤ )
Assertion aistia 𝜑

Proof

Step Hyp Ref Expression
1 aistia.1 ( 𝜑 ↔ ⊤ )
2 tbtru ( 𝜑 ↔ ( 𝜑 ↔ ⊤ ) )
3 1 2 mpbir 𝜑