| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ajfuni.5 | 
							⊢ 𝐴  =  ( 𝑈 adj 𝑊 )  | 
						
						
							| 2 | 
							
								
							 | 
							ajfuni.u | 
							⊢ 𝑈  ∈  CPreHilOLD  | 
						
						
							| 3 | 
							
								
							 | 
							ajfuni.w | 
							⊢ 𝑊  ∈  NrmCVec  | 
						
						
							| 4 | 
							
								
							 | 
							funopab | 
							⊢ ( Fun  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) }  ↔  ∀ 𝑡 ∃* 𝑠 ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( BaseSet ‘ 𝑈 )  =  ( BaseSet ‘ 𝑈 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( ·𝑖OLD ‘ 𝑈 )  =  ( ·𝑖OLD ‘ 𝑈 )  | 
						
						
							| 7 | 
							
								5 6 2
							 | 
							ajmoi | 
							⊢ ∃* 𝑠 ( 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							3simpc | 
							⊢ ( ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) )  →  ( 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							moimi | 
							⊢ ( ∃* 𝑠 ( 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) )  →  ∃* 𝑠 ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							ax-mp | 
							⊢ ∃* 𝑠 ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							mpgbir | 
							⊢ Fun  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) }  | 
						
						
							| 12 | 
							
								2
							 | 
							phnvi | 
							⊢ 𝑈  ∈  NrmCVec  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( BaseSet ‘ 𝑊 )  =  ( BaseSet ‘ 𝑊 )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( ·𝑖OLD ‘ 𝑊 )  =  ( ·𝑖OLD ‘ 𝑊 )  | 
						
						
							| 15 | 
							
								5 13 6 14 1
							 | 
							ajfval | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  𝐴  =  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } )  | 
						
						
							| 16 | 
							
								12 3 15
							 | 
							mp2an | 
							⊢ 𝐴  =  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) }  | 
						
						
							| 17 | 
							
								16
							 | 
							funeqi | 
							⊢ ( Fun  𝐴  ↔  Fun  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } )  | 
						
						
							| 18 | 
							
								11 17
							 | 
							mpbir | 
							⊢ Fun  𝐴  |