Step |
Hyp |
Ref |
Expression |
1 |
|
ajfuni.5 |
⊢ 𝐴 = ( 𝑈 adj 𝑊 ) |
2 |
|
ajfuni.u |
⊢ 𝑈 ∈ CPreHilOLD |
3 |
|
ajfuni.w |
⊢ 𝑊 ∈ NrmCVec |
4 |
|
funopab |
⊢ ( Fun { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } ↔ ∀ 𝑡 ∃* 𝑠 ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) ) |
5 |
|
eqid |
⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) |
6 |
|
eqid |
⊢ ( ·𝑖OLD ‘ 𝑈 ) = ( ·𝑖OLD ‘ 𝑈 ) |
7 |
5 6 2
|
ajmoi |
⊢ ∃* 𝑠 ( 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) |
8 |
|
3simpc |
⊢ ( ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) → ( 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) ) |
9 |
8
|
moimi |
⊢ ( ∃* 𝑠 ( 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) → ∃* 𝑠 ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) ) |
10 |
7 9
|
ax-mp |
⊢ ∃* 𝑠 ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) |
11 |
4 10
|
mpgbir |
⊢ Fun { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } |
12 |
2
|
phnvi |
⊢ 𝑈 ∈ NrmCVec |
13 |
|
eqid |
⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) |
14 |
|
eqid |
⊢ ( ·𝑖OLD ‘ 𝑊 ) = ( ·𝑖OLD ‘ 𝑊 ) |
15 |
5 13 6 14 1
|
ajfval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐴 = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } ) |
16 |
12 3 15
|
mp2an |
⊢ 𝐴 = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } |
17 |
16
|
funeqi |
⊢ ( Fun 𝐴 ↔ Fun { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } ) |
18 |
11 17
|
mpbir |
⊢ Fun 𝐴 |