Step |
Hyp |
Ref |
Expression |
1 |
|
ajfval.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
ajfval.2 |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
3 |
|
ajfval.3 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
4 |
|
ajfval.4 |
⊢ 𝑄 = ( ·𝑖OLD ‘ 𝑊 ) |
5 |
|
ajfval.5 |
⊢ 𝐴 = ( 𝑈 adj 𝑊 ) |
6 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = ( BaseSet ‘ 𝑈 ) ) |
7 |
6 1
|
eqtr4di |
⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = 𝑋 ) |
8 |
7
|
feq2d |
⊢ ( 𝑢 = 𝑈 → ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ↔ 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 ) ) ) |
9 |
7
|
feq3d |
⊢ ( 𝑢 = 𝑈 → ( 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ↔ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( ·𝑖OLD ‘ 𝑢 ) = ( ·𝑖OLD ‘ 𝑈 ) ) |
11 |
10 3
|
eqtr4di |
⊢ ( 𝑢 = 𝑈 → ( ·𝑖OLD ‘ 𝑢 ) = 𝑃 ) |
12 |
11
|
oveqd |
⊢ ( 𝑢 = 𝑈 → ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ↔ ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) |
15 |
7 14
|
raleqbidv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) |
16 |
8 9 15
|
3anbi123d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ) ↔ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) |
17 |
16
|
opabbidv |
⊢ ( 𝑢 = 𝑈 → { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ) } = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) |
18 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( BaseSet ‘ 𝑤 ) = ( BaseSet ‘ 𝑊 ) ) |
19 |
18 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( BaseSet ‘ 𝑤 ) = 𝑌 ) |
20 |
19
|
feq3d |
⊢ ( 𝑤 = 𝑊 → ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 ) ↔ 𝑡 : 𝑋 ⟶ 𝑌 ) ) |
21 |
19
|
feq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋 ↔ 𝑠 : 𝑌 ⟶ 𝑋 ) ) |
22 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ·𝑖OLD ‘ 𝑤 ) = ( ·𝑖OLD ‘ 𝑊 ) ) |
23 |
22 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ·𝑖OLD ‘ 𝑤 ) = 𝑄 ) |
24 |
23
|
oveqd |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) ) |
25 |
24
|
eqeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ↔ ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) |
26 |
19 25
|
raleqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) |
27 |
26
|
ralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) |
28 |
20 21 27
|
3anbi123d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ↔ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) |
29 |
28
|
opabbidv |
⊢ ( 𝑤 = 𝑊 → { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) |
30 |
|
df-aj |
⊢ adj = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ) } ) |
31 |
|
ovex |
⊢ ( 𝑌 ↑m 𝑋 ) ∈ V |
32 |
|
ovex |
⊢ ( 𝑋 ↑m 𝑌 ) ∈ V |
33 |
31 32
|
xpex |
⊢ ( ( 𝑌 ↑m 𝑋 ) × ( 𝑋 ↑m 𝑌 ) ) ∈ V |
34 |
2
|
fvexi |
⊢ 𝑌 ∈ V |
35 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
36 |
34 35
|
elmap |
⊢ ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝑡 : 𝑋 ⟶ 𝑌 ) |
37 |
35 34
|
elmap |
⊢ ( 𝑠 ∈ ( 𝑋 ↑m 𝑌 ) ↔ 𝑠 : 𝑌 ⟶ 𝑋 ) |
38 |
36 37
|
anbi12i |
⊢ ( ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝑠 ∈ ( 𝑋 ↑m 𝑌 ) ) ↔ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ) ) |
39 |
38
|
biimpri |
⊢ ( ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ) → ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝑠 ∈ ( 𝑋 ↑m 𝑌 ) ) ) |
40 |
39
|
3adant3 |
⊢ ( ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) → ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝑠 ∈ ( 𝑋 ↑m 𝑌 ) ) ) |
41 |
40
|
ssopab2i |
⊢ { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ⊆ { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝑠 ∈ ( 𝑋 ↑m 𝑌 ) ) } |
42 |
|
df-xp |
⊢ ( ( 𝑌 ↑m 𝑋 ) × ( 𝑋 ↑m 𝑌 ) ) = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝑠 ∈ ( 𝑋 ↑m 𝑌 ) ) } |
43 |
41 42
|
sseqtrri |
⊢ { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ⊆ ( ( 𝑌 ↑m 𝑋 ) × ( 𝑋 ↑m 𝑌 ) ) |
44 |
33 43
|
ssexi |
⊢ { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ∈ V |
45 |
17 29 30 44
|
ovmpo |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑈 adj 𝑊 ) = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) |
46 |
5 45
|
syl5eq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐴 = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) |