| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ip2eqi.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
ip2eqi.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
| 3 |
|
ip2eqi.u |
⊢ 𝑈 ∈ CPreHilOLD |
| 4 |
|
r19.26-2 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ∧ ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ↔ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) |
| 5 |
|
eqtr2 |
⊢ ( ( ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ∧ ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) → ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) |
| 6 |
5
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ∧ ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) |
| 7 |
4 6
|
sylbir |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) |
| 8 |
1 2 3
|
phoeqi |
⊢ ( ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ 𝑡 : 𝑌 ⟶ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ↔ 𝑠 = 𝑡 ) ) |
| 9 |
8
|
biimpa |
⊢ ( ( ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ 𝑡 : 𝑌 ⟶ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) → 𝑠 = 𝑡 ) |
| 10 |
7 9
|
sylan2 |
⊢ ( ( ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ 𝑡 : 𝑌 ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) → 𝑠 = 𝑡 ) |
| 11 |
10
|
an4s |
⊢ ( ( ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ∧ ( 𝑡 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) → 𝑠 = 𝑡 ) |
| 12 |
11
|
gen2 |
⊢ ∀ 𝑠 ∀ 𝑡 ( ( ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ∧ ( 𝑡 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) → 𝑠 = 𝑡 ) |
| 13 |
|
feq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 : 𝑌 ⟶ 𝑋 ↔ 𝑡 : 𝑌 ⟶ 𝑋 ) ) |
| 14 |
|
fveq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) |
| 16 |
15
|
eqeq2d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ↔ ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) |
| 17 |
16
|
2ralbidv |
⊢ ( 𝑠 = 𝑡 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) |
| 18 |
13 17
|
anbi12d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ↔ ( 𝑡 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) ) |
| 19 |
18
|
mo4 |
⊢ ( ∃* 𝑠 ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ↔ ∀ 𝑠 ∀ 𝑡 ( ( ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ∧ ( 𝑡 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) → 𝑠 = 𝑡 ) ) |
| 20 |
12 19
|
mpbir |
⊢ ∃* 𝑠 ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) |