Metamath Proof Explorer


Theorem ala1

Description: Add an antecedent in a universally quantified formula. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion ala1 ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 ax-1 ( 𝜑 → ( 𝜓𝜑 ) )
2 1 alimi ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝜓𝜑 ) )