Metamath Proof Explorer
Description: Variant of al2imi with conjunctive antecedent. (Contributed by Andrew
Salmon, 8-Jun-2011)
|
|
Ref |
Expression |
|
Hypothesis |
alanimi.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
|
Assertion |
alanimi |
⊢ ( ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) → ∀ 𝑥 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
alanimi.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
2 |
1
|
ex |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
3 |
2
|
al2imi |
⊢ ( ∀ 𝑥 𝜑 → ( ∀ 𝑥 𝜓 → ∀ 𝑥 𝜒 ) ) |
4 |
3
|
imp |
⊢ ( ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) → ∀ 𝑥 𝜒 ) |