Description: Theorem 19.15 of Margaris p. 90. (Contributed by NM, 24-Jan-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | albi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) | |
| 2 | 1 | al2imi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) |
| 3 | biimpr | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 → 𝜑 ) ) | |
| 4 | 3 | al2imi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∀ 𝑥 𝜓 → ∀ 𝑥 𝜑 ) ) |
| 5 | 2 4 | impbid | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜓 ) ) |