Metamath Proof Explorer


Theorem albidh

Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 26-May-1993)

Ref Expression
Hypotheses albidh.1 ( 𝜑 → ∀ 𝑥 𝜑 )
albidh.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion albidh ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑥 𝜒 ) )

Proof

Step Hyp Ref Expression
1 albidh.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 albidh.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 1 2 alrimih ( 𝜑 → ∀ 𝑥 ( 𝜓𝜒 ) )
4 albi ( ∀ 𝑥 ( 𝜓𝜒 ) → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑥 𝜒 ) )
5 3 4 syl ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑥 𝜒 ) )