Metamath Proof Explorer
Description: Formula-building rule for universal quantifier (deduction form).
(Contributed by NM, 26-May-1993)
|
|
Ref |
Expression |
|
Hypotheses |
albidh.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
|
|
albidh.2 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
Assertion |
albidh |
⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑥 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
albidh.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
2 |
|
albidh.2 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
1 2
|
alrimih |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) ) |
4 |
|
albi |
⊢ ( ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑥 𝜒 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑥 𝜒 ) ) |