Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | albiim | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜓 → 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ) | |
| 2 | 1 | albii | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) ↔ ∀ 𝑥 ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ) |
| 3 | 19.26 | ⊢ ( ∀ 𝑥 ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜓 → 𝜑 ) ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜓 → 𝜑 ) ) ) |