Metamath Proof Explorer


Theorem albiim

Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993)

Ref Expression
Assertion albiim ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜓𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 dfbi2 ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜓𝜑 ) ) )
2 1 albii ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( ( 𝜑𝜓 ) ∧ ( 𝜓𝜑 ) ) )
3 19.26 ( ∀ 𝑥 ( ( 𝜑𝜓 ) ∧ ( 𝜓𝜑 ) ) ↔ ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜓𝜑 ) ) )
4 2 3 bitri ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜓𝜑 ) ) )