Metamath Proof Explorer


Theorem aleph1irr

Description: There are at least aleph-one irrationals. (Contributed by NM, 2-Feb-2005)

Ref Expression
Assertion aleph1irr ( ℵ ‘ 1o ) ≼ ( ℝ ∖ ℚ )

Proof

Step Hyp Ref Expression
1 aleph1re ( ℵ ‘ 1o ) ≼ ℝ
2 reex ℝ ∈ V
3 numth3 ( ℝ ∈ V → ℝ ∈ dom card )
4 2 3 ax-mp ℝ ∈ dom card
5 nnenom ℕ ≈ ω
6 5 ensymi ω ≈ ℕ
7 ruc ℕ ≺ ℝ
8 ensdomtr ( ( ω ≈ ℕ ∧ ℕ ≺ ℝ ) → ω ≺ ℝ )
9 6 7 8 mp2an ω ≺ ℝ
10 sdomdom ( ω ≺ ℝ → ω ≼ ℝ )
11 9 10 ax-mp ω ≼ ℝ
12 resdomq ℚ ≺ ℝ
13 infdif ( ( ℝ ∈ dom card ∧ ω ≼ ℝ ∧ ℚ ≺ ℝ ) → ( ℝ ∖ ℚ ) ≈ ℝ )
14 4 11 12 13 mp3an ( ℝ ∖ ℚ ) ≈ ℝ
15 14 ensymi ℝ ≈ ( ℝ ∖ ℚ )
16 domentr ( ( ( ℵ ‘ 1o ) ≼ ℝ ∧ ℝ ≈ ( ℝ ∖ ℚ ) ) → ( ℵ ‘ 1o ) ≼ ( ℝ ∖ ℚ ) )
17 1 15 16 mp2an ( ℵ ‘ 1o ) ≼ ( ℝ ∖ ℚ )