Description: There are at least aleph-one irrationals. (Contributed by NM, 2-Feb-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | aleph1irr | ⊢ ( ℵ ‘ 1o ) ≼ ( ℝ ∖ ℚ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aleph1re | ⊢ ( ℵ ‘ 1o ) ≼ ℝ | |
2 | reex | ⊢ ℝ ∈ V | |
3 | numth3 | ⊢ ( ℝ ∈ V → ℝ ∈ dom card ) | |
4 | 2 3 | ax-mp | ⊢ ℝ ∈ dom card |
5 | nnenom | ⊢ ℕ ≈ ω | |
6 | 5 | ensymi | ⊢ ω ≈ ℕ |
7 | ruc | ⊢ ℕ ≺ ℝ | |
8 | ensdomtr | ⊢ ( ( ω ≈ ℕ ∧ ℕ ≺ ℝ ) → ω ≺ ℝ ) | |
9 | 6 7 8 | mp2an | ⊢ ω ≺ ℝ |
10 | sdomdom | ⊢ ( ω ≺ ℝ → ω ≼ ℝ ) | |
11 | 9 10 | ax-mp | ⊢ ω ≼ ℝ |
12 | resdomq | ⊢ ℚ ≺ ℝ | |
13 | infdif | ⊢ ( ( ℝ ∈ dom card ∧ ω ≼ ℝ ∧ ℚ ≺ ℝ ) → ( ℝ ∖ ℚ ) ≈ ℝ ) | |
14 | 4 11 12 13 | mp3an | ⊢ ( ℝ ∖ ℚ ) ≈ ℝ |
15 | 14 | ensymi | ⊢ ℝ ≈ ( ℝ ∖ ℚ ) |
16 | domentr | ⊢ ( ( ( ℵ ‘ 1o ) ≼ ℝ ∧ ℝ ≈ ( ℝ ∖ ℚ ) ) → ( ℵ ‘ 1o ) ≼ ( ℝ ∖ ℚ ) ) | |
17 | 1 15 16 | mp2an | ⊢ ( ℵ ‘ 1o ) ≼ ( ℝ ∖ ℚ ) |