Step |
Hyp |
Ref |
Expression |
1 |
|
aleph0 |
⊢ ( ℵ ‘ ∅ ) = ω |
2 |
|
nnenom |
⊢ ℕ ≈ ω |
3 |
2
|
ensymi |
⊢ ω ≈ ℕ |
4 |
1 3
|
eqbrtri |
⊢ ( ℵ ‘ ∅ ) ≈ ℕ |
5 |
|
ruc |
⊢ ℕ ≺ ℝ |
6 |
|
ensdomtr |
⊢ ( ( ( ℵ ‘ ∅ ) ≈ ℕ ∧ ℕ ≺ ℝ ) → ( ℵ ‘ ∅ ) ≺ ℝ ) |
7 |
4 5 6
|
mp2an |
⊢ ( ℵ ‘ ∅ ) ≺ ℝ |
8 |
|
alephnbtwn2 |
⊢ ¬ ( ( ℵ ‘ ∅ ) ≺ ℝ ∧ ℝ ≺ ( ℵ ‘ suc ∅ ) ) |
9 |
7 8
|
mptnan |
⊢ ¬ ℝ ≺ ( ℵ ‘ suc ∅ ) |
10 |
|
df-1o |
⊢ 1o = suc ∅ |
11 |
10
|
fveq2i |
⊢ ( ℵ ‘ 1o ) = ( ℵ ‘ suc ∅ ) |
12 |
11
|
breq2i |
⊢ ( ℝ ≺ ( ℵ ‘ 1o ) ↔ ℝ ≺ ( ℵ ‘ suc ∅ ) ) |
13 |
9 12
|
mtbir |
⊢ ¬ ℝ ≺ ( ℵ ‘ 1o ) |
14 |
|
fvex |
⊢ ( ℵ ‘ 1o ) ∈ V |
15 |
|
reex |
⊢ ℝ ∈ V |
16 |
|
domtri |
⊢ ( ( ( ℵ ‘ 1o ) ∈ V ∧ ℝ ∈ V ) → ( ( ℵ ‘ 1o ) ≼ ℝ ↔ ¬ ℝ ≺ ( ℵ ‘ 1o ) ) ) |
17 |
14 15 16
|
mp2an |
⊢ ( ( ℵ ‘ 1o ) ≼ ℝ ↔ ¬ ℝ ≺ ( ℵ ‘ 1o ) ) |
18 |
13 17
|
mpbir |
⊢ ( ℵ ‘ 1o ) ≼ ℝ |