Metamath Proof Explorer


Theorem aleph1re

Description: There are at least aleph-one real numbers. (Contributed by NM, 2-Feb-2005)

Ref Expression
Assertion aleph1re ( ℵ ‘ 1o ) ≼ ℝ

Proof

Step Hyp Ref Expression
1 aleph0 ( ℵ ‘ ∅ ) = ω
2 nnenom ℕ ≈ ω
3 2 ensymi ω ≈ ℕ
4 1 3 eqbrtri ( ℵ ‘ ∅ ) ≈ ℕ
5 ruc ℕ ≺ ℝ
6 ensdomtr ( ( ( ℵ ‘ ∅ ) ≈ ℕ ∧ ℕ ≺ ℝ ) → ( ℵ ‘ ∅ ) ≺ ℝ )
7 4 5 6 mp2an ( ℵ ‘ ∅ ) ≺ ℝ
8 alephnbtwn2 ¬ ( ( ℵ ‘ ∅ ) ≺ ℝ ∧ ℝ ≺ ( ℵ ‘ suc ∅ ) )
9 7 8 mptnan ¬ ℝ ≺ ( ℵ ‘ suc ∅ )
10 df-1o 1o = suc ∅
11 10 fveq2i ( ℵ ‘ 1o ) = ( ℵ ‘ suc ∅ )
12 11 breq2i ( ℝ ≺ ( ℵ ‘ 1o ) ↔ ℝ ≺ ( ℵ ‘ suc ∅ ) )
13 9 12 mtbir ¬ ℝ ≺ ( ℵ ‘ 1o )
14 fvex ( ℵ ‘ 1o ) ∈ V
15 reex ℝ ∈ V
16 domtri ( ( ( ℵ ‘ 1o ) ∈ V ∧ ℝ ∈ V ) → ( ( ℵ ‘ 1o ) ≼ ℝ ↔ ¬ ℝ ≺ ( ℵ ‘ 1o ) ) )
17 14 15 16 mp2an ( ( ℵ ‘ 1o ) ≼ ℝ ↔ ¬ ℝ ≺ ( ℵ ‘ 1o ) )
18 13 17 mpbir ( ℵ ‘ 1o ) ≼ ℝ