Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
⊢ ( ℵ ‘ 𝐴 ) ∈ V |
2 |
|
fvex |
⊢ ( ℵ ‘ 𝐵 ) ∈ V |
3 |
|
djuex |
⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ V ∧ ( ℵ ‘ 𝐵 ) ∈ V ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ∈ V ) |
4 |
1 2 3
|
mp2an |
⊢ ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ∈ V |
5 |
|
alephfnon |
⊢ ℵ Fn On |
6 |
5
|
fndmi |
⊢ dom ℵ = On |
7 |
6
|
eleq2i |
⊢ ( 𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On ) |
8 |
7
|
notbii |
⊢ ( ¬ 𝐴 ∈ dom ℵ ↔ ¬ 𝐴 ∈ On ) |
9 |
6
|
eleq2i |
⊢ ( 𝐵 ∈ dom ℵ ↔ 𝐵 ∈ On ) |
10 |
9
|
notbii |
⊢ ( ¬ 𝐵 ∈ dom ℵ ↔ ¬ 𝐵 ∈ On ) |
11 |
|
df-dju |
⊢ ( ∅ ⊔ ∅ ) = ( ( { ∅ } × ∅ ) ∪ ( { 1o } × ∅ ) ) |
12 |
|
xpundir |
⊢ ( ( { ∅ } ∪ { 1o } ) × ∅ ) = ( ( { ∅ } × ∅ ) ∪ ( { 1o } × ∅ ) ) |
13 |
|
xp0 |
⊢ ( ( { ∅ } ∪ { 1o } ) × ∅ ) = ∅ |
14 |
11 12 13
|
3eqtr2i |
⊢ ( ∅ ⊔ ∅ ) = ∅ |
15 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ℵ ‘ 𝐴 ) = ∅ ) |
16 |
|
ndmfv |
⊢ ( ¬ 𝐵 ∈ dom ℵ → ( ℵ ‘ 𝐵 ) = ∅ ) |
17 |
|
djueq12 |
⊢ ( ( ( ℵ ‘ 𝐴 ) = ∅ ∧ ( ℵ ‘ 𝐵 ) = ∅ ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) = ( ∅ ⊔ ∅ ) ) |
18 |
15 16 17
|
syl2an |
⊢ ( ( ¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) = ( ∅ ⊔ ∅ ) ) |
19 |
15
|
adantr |
⊢ ( ( ¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ ) → ( ℵ ‘ 𝐴 ) = ∅ ) |
20 |
16
|
adantl |
⊢ ( ( ¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ ) → ( ℵ ‘ 𝐵 ) = ∅ ) |
21 |
19 20
|
uneq12d |
⊢ ( ( ¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ ) → ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) = ( ∅ ∪ ∅ ) ) |
22 |
|
un0 |
⊢ ( ∅ ∪ ∅ ) = ∅ |
23 |
21 22
|
eqtrdi |
⊢ ( ( ¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ ) → ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) = ∅ ) |
24 |
14 18 23
|
3eqtr4a |
⊢ ( ( ¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) = ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
25 |
8 10 24
|
syl2anbr |
⊢ ( ( ¬ 𝐴 ∈ On ∧ ¬ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) = ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
26 |
|
eqeng |
⊢ ( ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ∈ V → ( ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) = ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) ) |
27 |
4 25 26
|
mpsyl |
⊢ ( ( ¬ 𝐴 ∈ On ∧ ¬ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
28 |
27
|
ex |
⊢ ( ¬ 𝐴 ∈ On → ( ¬ 𝐵 ∈ On → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) ) |
29 |
|
alephgeom |
⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) |
30 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ V → ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) ) |
31 |
1 30
|
ax-mp |
⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) |
32 |
|
alephon |
⊢ ( ℵ ‘ 𝐴 ) ∈ On |
33 |
|
onenon |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ℵ ‘ 𝐴 ) ∈ dom card ) |
34 |
32 33
|
ax-mp |
⊢ ( ℵ ‘ 𝐴 ) ∈ dom card |
35 |
|
alephon |
⊢ ( ℵ ‘ 𝐵 ) ∈ On |
36 |
|
onenon |
⊢ ( ( ℵ ‘ 𝐵 ) ∈ On → ( ℵ ‘ 𝐵 ) ∈ dom card ) |
37 |
35 36
|
ax-mp |
⊢ ( ℵ ‘ 𝐵 ) ∈ dom card |
38 |
|
infdju |
⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ dom card ∧ ( ℵ ‘ 𝐵 ) ∈ dom card ∧ ω ≼ ( ℵ ‘ 𝐴 ) ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
39 |
34 37 38
|
mp3an12 |
⊢ ( ω ≼ ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
40 |
31 39
|
syl |
⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
41 |
29 40
|
sylbi |
⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
42 |
|
alephgeom |
⊢ ( 𝐵 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐵 ) ) |
43 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝐵 ) ∈ V → ( ω ⊆ ( ℵ ‘ 𝐵 ) → ω ≼ ( ℵ ‘ 𝐵 ) ) ) |
44 |
2 43
|
ax-mp |
⊢ ( ω ⊆ ( ℵ ‘ 𝐵 ) → ω ≼ ( ℵ ‘ 𝐵 ) ) |
45 |
|
djucomen |
⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ V ∧ ( ℵ ‘ 𝐵 ) ∈ V ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ⊔ ( ℵ ‘ 𝐴 ) ) ) |
46 |
1 2 45
|
mp2an |
⊢ ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ⊔ ( ℵ ‘ 𝐴 ) ) |
47 |
|
infdju |
⊢ ( ( ( ℵ ‘ 𝐵 ) ∈ dom card ∧ ( ℵ ‘ 𝐴 ) ∈ dom card ∧ ω ≼ ( ℵ ‘ 𝐵 ) ) → ( ( ℵ ‘ 𝐵 ) ⊔ ( ℵ ‘ 𝐴 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ∪ ( ℵ ‘ 𝐴 ) ) ) |
48 |
37 34 47
|
mp3an12 |
⊢ ( ω ≼ ( ℵ ‘ 𝐵 ) → ( ( ℵ ‘ 𝐵 ) ⊔ ( ℵ ‘ 𝐴 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ∪ ( ℵ ‘ 𝐴 ) ) ) |
49 |
|
entr |
⊢ ( ( ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ⊔ ( ℵ ‘ 𝐴 ) ) ∧ ( ( ℵ ‘ 𝐵 ) ⊔ ( ℵ ‘ 𝐴 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ∪ ( ℵ ‘ 𝐴 ) ) ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ∪ ( ℵ ‘ 𝐴 ) ) ) |
50 |
46 48 49
|
sylancr |
⊢ ( ω ≼ ( ℵ ‘ 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ∪ ( ℵ ‘ 𝐴 ) ) ) |
51 |
|
uncom |
⊢ ( ( ℵ ‘ 𝐵 ) ∪ ( ℵ ‘ 𝐴 ) ) = ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) |
52 |
50 51
|
breqtrdi |
⊢ ( ω ≼ ( ℵ ‘ 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
53 |
44 52
|
syl |
⊢ ( ω ⊆ ( ℵ ‘ 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
54 |
42 53
|
sylbi |
⊢ ( 𝐵 ∈ On → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
55 |
28 41 54
|
pm2.61ii |
⊢ ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) |