| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephgeom |
⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| 2 |
|
fvex |
⊢ ( ℵ ‘ 𝐴 ) ∈ V |
| 3 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ V → ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) |
| 5 |
1 4
|
sylbi |
⊢ ( 𝐴 ∈ On → ω ≼ ( ℵ ‘ 𝐴 ) ) |
| 6 |
|
domrefg |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ V → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐴 ) ) |
| 7 |
2 6
|
ax-mp |
⊢ ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐴 ) |
| 8 |
|
infmap |
⊢ ( ( ω ≼ ( ℵ ‘ 𝐴 ) ∧ ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐴 ) ) → ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ≈ ( ℵ ‘ 𝐴 ) ) } ) |
| 9 |
5 7 8
|
sylancl |
⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ≈ ( ℵ ‘ 𝐴 ) ) } ) |
| 10 |
|
pm3.2 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ On → ( 𝐴 ∈ On ∧ 𝐴 ∈ On ) ) ) |
| 11 |
10
|
pm2.43i |
⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ On ∧ 𝐴 ∈ On ) ) |
| 12 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
| 13 |
|
alephexp1 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐴 ⊆ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ≈ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 14 |
11 12 13
|
sylancl |
⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ≈ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 15 |
|
enen1 |
⊢ ( ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ≈ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) → ( ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ≈ ( ℵ ‘ 𝐴 ) ) } ↔ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ≈ ( ℵ ‘ 𝐴 ) ) } ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝐴 ∈ On → ( ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ≈ ( ℵ ‘ 𝐴 ) ) } ↔ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ≈ ( ℵ ‘ 𝐴 ) ) } ) ) |
| 17 |
9 16
|
mpbid |
⊢ ( 𝐴 ∈ On → ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ≈ ( ℵ ‘ 𝐴 ) ) } ) |