Metamath Proof Explorer


Theorem alephfnon

Description: The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Assertion alephfnon ℵ Fn On

Proof

Step Hyp Ref Expression
1 rdgfnon rec ( har , ω ) Fn On
2 df-aleph ℵ = rec ( har , ω )
3 2 fneq1i ( ℵ Fn On ↔ rec ( har , ω ) Fn On )
4 1 3 mpbir ℵ Fn On