Step |
Hyp |
Ref |
Expression |
1 |
|
alephsson |
⊢ ran ℵ ⊆ On |
2 |
|
eqid |
⊢ ( rec ( ℵ , ω ) ↾ ω ) = ( rec ( ℵ , ω ) ↾ ω ) |
3 |
2
|
alephfplem4 |
⊢ ∪ ( ( rec ( ℵ , ω ) ↾ ω ) “ ω ) ∈ ran ℵ |
4 |
1 3
|
sselii |
⊢ ∪ ( ( rec ( ℵ , ω ) ↾ ω ) “ ω ) ∈ On |
5 |
2
|
alephfp |
⊢ ( ℵ ‘ ∪ ( ( rec ( ℵ , ω ) ↾ ω ) “ ω ) ) = ∪ ( ( rec ( ℵ , ω ) ↾ ω ) “ ω ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = ∪ ( ( rec ( ℵ , ω ) ↾ ω ) “ ω ) → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ ∪ ( ( rec ( ℵ , ω ) ↾ ω ) “ ω ) ) ) |
7 |
|
id |
⊢ ( 𝑥 = ∪ ( ( rec ( ℵ , ω ) ↾ ω ) “ ω ) → 𝑥 = ∪ ( ( rec ( ℵ , ω ) ↾ ω ) “ ω ) ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝑥 = ∪ ( ( rec ( ℵ , ω ) ↾ ω ) “ ω ) → ( ( ℵ ‘ 𝑥 ) = 𝑥 ↔ ( ℵ ‘ ∪ ( ( rec ( ℵ , ω ) ↾ ω ) “ ω ) ) = ∪ ( ( rec ( ℵ , ω ) ↾ ω ) “ ω ) ) ) |
9 |
8
|
rspcev |
⊢ ( ( ∪ ( ( rec ( ℵ , ω ) ↾ ω ) “ ω ) ∈ On ∧ ( ℵ ‘ ∪ ( ( rec ( ℵ , ω ) ↾ ω ) “ ω ) ) = ∪ ( ( rec ( ℵ , ω ) ↾ ω ) “ ω ) ) → ∃ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) = 𝑥 ) |
10 |
4 5 9
|
mp2an |
⊢ ∃ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) = 𝑥 |