Step |
Hyp |
Ref |
Expression |
1 |
|
alephnbtwn2 |
⊢ ¬ ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) ) |
2 |
|
sdomen2 |
⊢ ( ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) → ( 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) ↔ 𝑥 ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) |
3 |
2
|
anbi2d |
⊢ ( ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) → ( ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) ) ↔ ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) ) |
4 |
1 3
|
mtbii |
⊢ ( ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) → ¬ ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) |
5 |
4
|
alrimiv |
⊢ ( ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) → ∀ 𝑥 ¬ ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) |
6 |
5
|
olcd |
⊢ ( ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ∈ Fin ∨ ∀ 𝑥 ¬ ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) ) |
7 |
|
fvex |
⊢ ( ℵ ‘ 𝐴 ) ∈ V |
8 |
|
elgch |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ V → ( ( ℵ ‘ 𝐴 ) ∈ GCH ↔ ( ( ℵ ‘ 𝐴 ) ∈ Fin ∨ ∀ 𝑥 ¬ ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) ) ) |
9 |
7 8
|
ax-mp |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ GCH ↔ ( ( ℵ ‘ 𝐴 ) ∈ Fin ∨ ∀ 𝑥 ¬ ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) ) |
10 |
6 9
|
sylibr |
⊢ ( ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) → ( ℵ ‘ 𝐴 ) ∈ GCH ) |