Step |
Hyp |
Ref |
Expression |
1 |
|
aleph0 |
⊢ ( ℵ ‘ ∅ ) = ω |
2 |
|
0ss |
⊢ ∅ ⊆ 𝐴 |
3 |
|
0elon |
⊢ ∅ ∈ On |
4 |
|
alephord3 |
⊢ ( ( ∅ ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ⊆ 𝐴 ↔ ( ℵ ‘ ∅ ) ⊆ ( ℵ ‘ 𝐴 ) ) ) |
5 |
3 4
|
mpan |
⊢ ( 𝐴 ∈ On → ( ∅ ⊆ 𝐴 ↔ ( ℵ ‘ ∅ ) ⊆ ( ℵ ‘ 𝐴 ) ) ) |
6 |
2 5
|
mpbii |
⊢ ( 𝐴 ∈ On → ( ℵ ‘ ∅ ) ⊆ ( ℵ ‘ 𝐴 ) ) |
7 |
1 6
|
eqsstrrid |
⊢ ( 𝐴 ∈ On → ω ⊆ ( ℵ ‘ 𝐴 ) ) |
8 |
|
peano1 |
⊢ ∅ ∈ ω |
9 |
|
ordom |
⊢ Ord ω |
10 |
|
ord0 |
⊢ Ord ∅ |
11 |
|
ordtri1 |
⊢ ( ( Ord ω ∧ Ord ∅ ) → ( ω ⊆ ∅ ↔ ¬ ∅ ∈ ω ) ) |
12 |
9 10 11
|
mp2an |
⊢ ( ω ⊆ ∅ ↔ ¬ ∅ ∈ ω ) |
13 |
12
|
con2bii |
⊢ ( ∅ ∈ ω ↔ ¬ ω ⊆ ∅ ) |
14 |
8 13
|
mpbi |
⊢ ¬ ω ⊆ ∅ |
15 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ℵ ‘ 𝐴 ) = ∅ ) |
16 |
15
|
sseq2d |
⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ω ⊆ ( ℵ ‘ 𝐴 ) ↔ ω ⊆ ∅ ) ) |
17 |
14 16
|
mtbiri |
⊢ ( ¬ 𝐴 ∈ dom ℵ → ¬ ω ⊆ ( ℵ ‘ 𝐴 ) ) |
18 |
17
|
con4i |
⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → 𝐴 ∈ dom ℵ ) |
19 |
|
alephfnon |
⊢ ℵ Fn On |
20 |
19
|
fndmi |
⊢ dom ℵ = On |
21 |
18 20
|
eleqtrdi |
⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → 𝐴 ∈ On ) |
22 |
7 21
|
impbii |
⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) |