| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aleph0 | ⊢ ( ℵ ‘ ∅ )  =  ω | 
						
							| 2 |  | 0ss | ⊢ ∅  ⊆  𝐴 | 
						
							| 3 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 4 |  | alephord3 | ⊢ ( ( ∅  ∈  On  ∧  𝐴  ∈  On )  →  ( ∅  ⊆  𝐴  ↔  ( ℵ ‘ ∅ )  ⊆  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 5 | 3 4 | mpan | ⊢ ( 𝐴  ∈  On  →  ( ∅  ⊆  𝐴  ↔  ( ℵ ‘ ∅ )  ⊆  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 6 | 2 5 | mpbii | ⊢ ( 𝐴  ∈  On  →  ( ℵ ‘ ∅ )  ⊆  ( ℵ ‘ 𝐴 ) ) | 
						
							| 7 | 1 6 | eqsstrrid | ⊢ ( 𝐴  ∈  On  →  ω  ⊆  ( ℵ ‘ 𝐴 ) ) | 
						
							| 8 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 9 |  | ordom | ⊢ Ord  ω | 
						
							| 10 |  | ord0 | ⊢ Ord  ∅ | 
						
							| 11 |  | ordtri1 | ⊢ ( ( Ord  ω  ∧  Ord  ∅ )  →  ( ω  ⊆  ∅  ↔  ¬  ∅  ∈  ω ) ) | 
						
							| 12 | 9 10 11 | mp2an | ⊢ ( ω  ⊆  ∅  ↔  ¬  ∅  ∈  ω ) | 
						
							| 13 | 12 | con2bii | ⊢ ( ∅  ∈  ω  ↔  ¬  ω  ⊆  ∅ ) | 
						
							| 14 | 8 13 | mpbi | ⊢ ¬  ω  ⊆  ∅ | 
						
							| 15 |  | ndmfv | ⊢ ( ¬  𝐴  ∈  dom  ℵ  →  ( ℵ ‘ 𝐴 )  =  ∅ ) | 
						
							| 16 | 15 | sseq2d | ⊢ ( ¬  𝐴  ∈  dom  ℵ  →  ( ω  ⊆  ( ℵ ‘ 𝐴 )  ↔  ω  ⊆  ∅ ) ) | 
						
							| 17 | 14 16 | mtbiri | ⊢ ( ¬  𝐴  ∈  dom  ℵ  →  ¬  ω  ⊆  ( ℵ ‘ 𝐴 ) ) | 
						
							| 18 | 17 | con4i | ⊢ ( ω  ⊆  ( ℵ ‘ 𝐴 )  →  𝐴  ∈  dom  ℵ ) | 
						
							| 19 |  | alephfnon | ⊢ ℵ  Fn  On | 
						
							| 20 | 19 | fndmi | ⊢ dom  ℵ  =  On | 
						
							| 21 | 18 20 | eleqtrdi | ⊢ ( ω  ⊆  ( ℵ ‘ 𝐴 )  →  𝐴  ∈  On ) | 
						
							| 22 | 7 21 | impbii | ⊢ ( 𝐴  ∈  On  ↔  ω  ⊆  ( ℵ ‘ 𝐴 ) ) |