| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							aleph0 | 
							⊢ ( ℵ ‘ ∅ )  =  ω  | 
						
						
							| 2 | 
							
								
							 | 
							0ss | 
							⊢ ∅  ⊆  𝐴  | 
						
						
							| 3 | 
							
								
							 | 
							0elon | 
							⊢ ∅  ∈  On  | 
						
						
							| 4 | 
							
								
							 | 
							alephord3 | 
							⊢ ( ( ∅  ∈  On  ∧  𝐴  ∈  On )  →  ( ∅  ⊆  𝐴  ↔  ( ℵ ‘ ∅ )  ⊆  ( ℵ ‘ 𝐴 ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							mpan | 
							⊢ ( 𝐴  ∈  On  →  ( ∅  ⊆  𝐴  ↔  ( ℵ ‘ ∅ )  ⊆  ( ℵ ‘ 𝐴 ) ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							mpbii | 
							⊢ ( 𝐴  ∈  On  →  ( ℵ ‘ ∅ )  ⊆  ( ℵ ‘ 𝐴 ) )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							eqsstrrid | 
							⊢ ( 𝐴  ∈  On  →  ω  ⊆  ( ℵ ‘ 𝐴 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							peano1 | 
							⊢ ∅  ∈  ω  | 
						
						
							| 9 | 
							
								
							 | 
							ordom | 
							⊢ Ord  ω  | 
						
						
							| 10 | 
							
								
							 | 
							ord0 | 
							⊢ Ord  ∅  | 
						
						
							| 11 | 
							
								
							 | 
							ordtri1 | 
							⊢ ( ( Ord  ω  ∧  Ord  ∅ )  →  ( ω  ⊆  ∅  ↔  ¬  ∅  ∈  ω ) )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							mp2an | 
							⊢ ( ω  ⊆  ∅  ↔  ¬  ∅  ∈  ω )  | 
						
						
							| 13 | 
							
								12
							 | 
							con2bii | 
							⊢ ( ∅  ∈  ω  ↔  ¬  ω  ⊆  ∅ )  | 
						
						
							| 14 | 
							
								8 13
							 | 
							mpbi | 
							⊢ ¬  ω  ⊆  ∅  | 
						
						
							| 15 | 
							
								
							 | 
							ndmfv | 
							⊢ ( ¬  𝐴  ∈  dom  ℵ  →  ( ℵ ‘ 𝐴 )  =  ∅ )  | 
						
						
							| 16 | 
							
								15
							 | 
							sseq2d | 
							⊢ ( ¬  𝐴  ∈  dom  ℵ  →  ( ω  ⊆  ( ℵ ‘ 𝐴 )  ↔  ω  ⊆  ∅ ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							mtbiri | 
							⊢ ( ¬  𝐴  ∈  dom  ℵ  →  ¬  ω  ⊆  ( ℵ ‘ 𝐴 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							con4i | 
							⊢ ( ω  ⊆  ( ℵ ‘ 𝐴 )  →  𝐴  ∈  dom  ℵ )  | 
						
						
							| 19 | 
							
								
							 | 
							alephfnon | 
							⊢ ℵ  Fn  On  | 
						
						
							| 20 | 
							
								19
							 | 
							fndmi | 
							⊢ dom  ℵ  =  On  | 
						
						
							| 21 | 
							
								18 20
							 | 
							eleqtrdi | 
							⊢ ( ω  ⊆  ( ℵ ‘ 𝐴 )  →  𝐴  ∈  On )  | 
						
						
							| 22 | 
							
								7 21
							 | 
							impbii | 
							⊢ ( 𝐴  ∈  On  ↔  ω  ⊆  ( ℵ ‘ 𝐴 ) )  |