Description: Value of the aleph function at a limit ordinal. Definition 12(iii) of Suppes p. 91. (Contributed by NM, 21-Oct-2003) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephlim | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( ℵ ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdglim2a | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → ( rec ( har , ω ) ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( rec ( har , ω ) ‘ 𝑥 ) ) | |
| 2 | df-aleph | ⊢ ℵ = rec ( har , ω ) | |
| 3 | 2 | fveq1i | ⊢ ( ℵ ‘ 𝐴 ) = ( rec ( har , ω ) ‘ 𝐴 ) |
| 4 | 2 | fveq1i | ⊢ ( ℵ ‘ 𝑥 ) = ( rec ( har , ω ) ‘ 𝑥 ) |
| 5 | 4 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → ( ℵ ‘ 𝑥 ) = ( rec ( har , ω ) ‘ 𝑥 ) ) |
| 6 | 5 | iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 ( ℵ ‘ 𝑥 ) = ∪ 𝑥 ∈ 𝐴 ( rec ( har , ω ) ‘ 𝑥 ) |
| 7 | 1 3 6 | 3eqtr4g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( ℵ ‘ 𝑥 ) ) |