Metamath Proof Explorer


Theorem alephlim

Description: Value of the aleph function at a limit ordinal. Definition 12(iii) of Suppes p. 91. (Contributed by NM, 21-Oct-2003) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Assertion alephlim ( ( 𝐴𝑉 ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) = 𝑥𝐴 ( ℵ ‘ 𝑥 ) )

Proof

Step Hyp Ref Expression
1 rdglim2a ( ( 𝐴𝑉 ∧ Lim 𝐴 ) → ( rec ( har , ω ) ‘ 𝐴 ) = 𝑥𝐴 ( rec ( har , ω ) ‘ 𝑥 ) )
2 df-aleph ℵ = rec ( har , ω )
3 2 fveq1i ( ℵ ‘ 𝐴 ) = ( rec ( har , ω ) ‘ 𝐴 )
4 2 fveq1i ( ℵ ‘ 𝑥 ) = ( rec ( har , ω ) ‘ 𝑥 )
5 4 a1i ( 𝑥𝐴 → ( ℵ ‘ 𝑥 ) = ( rec ( har , ω ) ‘ 𝑥 ) )
6 5 iuneq2i 𝑥𝐴 ( ℵ ‘ 𝑥 ) = 𝑥𝐴 ( rec ( har , ω ) ‘ 𝑥 )
7 1 3 6 3eqtr4g ( ( 𝐴𝑉 ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) = 𝑥𝐴 ( ℵ ‘ 𝑥 ) )