| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephgeom |
⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| 2 |
|
fvex |
⊢ ( ℵ ‘ 𝐴 ) ∈ V |
| 3 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ V → ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) |
| 5 |
1 4
|
sylbi |
⊢ ( 𝐴 ∈ On → ω ≼ ( ℵ ‘ 𝐴 ) ) |
| 6 |
|
alephon |
⊢ ( ℵ ‘ 𝐴 ) ∈ On |
| 7 |
|
onenon |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ℵ ‘ 𝐴 ) ∈ dom card ) |
| 8 |
6 7
|
ax-mp |
⊢ ( ℵ ‘ 𝐴 ) ∈ dom card |
| 9 |
5 8
|
jctil |
⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) ∈ dom card ∧ ω ≼ ( ℵ ‘ 𝐴 ) ) ) |
| 10 |
|
alephgeom |
⊢ ( 𝐵 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐵 ) ) |
| 11 |
|
fvex |
⊢ ( ℵ ‘ 𝐵 ) ∈ V |
| 12 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝐵 ) ∈ V → ( ω ⊆ ( ℵ ‘ 𝐵 ) → ω ≼ ( ℵ ‘ 𝐵 ) ) ) |
| 13 |
11 12
|
ax-mp |
⊢ ( ω ⊆ ( ℵ ‘ 𝐵 ) → ω ≼ ( ℵ ‘ 𝐵 ) ) |
| 14 |
|
infn0 |
⊢ ( ω ≼ ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐵 ) ≠ ∅ ) |
| 15 |
13 14
|
syl |
⊢ ( ω ⊆ ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐵 ) ≠ ∅ ) |
| 16 |
10 15
|
sylbi |
⊢ ( 𝐵 ∈ On → ( ℵ ‘ 𝐵 ) ≠ ∅ ) |
| 17 |
|
alephon |
⊢ ( ℵ ‘ 𝐵 ) ∈ On |
| 18 |
|
onenon |
⊢ ( ( ℵ ‘ 𝐵 ) ∈ On → ( ℵ ‘ 𝐵 ) ∈ dom card ) |
| 19 |
17 18
|
ax-mp |
⊢ ( ℵ ‘ 𝐵 ) ∈ dom card |
| 20 |
16 19
|
jctil |
⊢ ( 𝐵 ∈ On → ( ( ℵ ‘ 𝐵 ) ∈ dom card ∧ ( ℵ ‘ 𝐵 ) ≠ ∅ ) ) |
| 21 |
|
infxp |
⊢ ( ( ( ( ℵ ‘ 𝐴 ) ∈ dom card ∧ ω ≼ ( ℵ ‘ 𝐴 ) ) ∧ ( ( ℵ ‘ 𝐵 ) ∈ dom card ∧ ( ℵ ‘ 𝐵 ) ≠ ∅ ) ) → ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
| 22 |
9 20 21
|
syl2an |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |