Step |
Hyp |
Ref |
Expression |
1 |
|
cardidm |
⊢ ( card ‘ ( card ‘ 𝐵 ) ) = ( card ‘ 𝐵 ) |
2 |
|
alephnbtwn |
⊢ ( ( card ‘ ( card ‘ 𝐵 ) ) = ( card ‘ 𝐵 ) → ¬ ( ( ℵ ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ∧ ( card ‘ 𝐵 ) ∈ ( ℵ ‘ suc 𝐴 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ¬ ( ( ℵ ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ∧ ( card ‘ 𝐵 ) ∈ ( ℵ ‘ suc 𝐴 ) ) |
4 |
|
alephon |
⊢ ( ℵ ‘ suc 𝐴 ) ∈ On |
5 |
|
sdomdom |
⊢ ( 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) → 𝐵 ≼ ( ℵ ‘ suc 𝐴 ) ) |
6 |
|
ondomen |
⊢ ( ( ( ℵ ‘ suc 𝐴 ) ∈ On ∧ 𝐵 ≼ ( ℵ ‘ suc 𝐴 ) ) → 𝐵 ∈ dom card ) |
7 |
4 5 6
|
sylancr |
⊢ ( 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) → 𝐵 ∈ dom card ) |
8 |
|
cardid2 |
⊢ ( 𝐵 ∈ dom card → ( card ‘ 𝐵 ) ≈ 𝐵 ) |
9 |
7 8
|
syl |
⊢ ( 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) → ( card ‘ 𝐵 ) ≈ 𝐵 ) |
10 |
9
|
ensymd |
⊢ ( 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) → 𝐵 ≈ ( card ‘ 𝐵 ) ) |
11 |
|
sdomentr |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ∧ 𝐵 ≈ ( card ‘ 𝐵 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( card ‘ 𝐵 ) ) |
12 |
10 11
|
sylan2 |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ∧ 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( card ‘ 𝐵 ) ) |
13 |
|
alephon |
⊢ ( ℵ ‘ 𝐴 ) ∈ On |
14 |
|
cardon |
⊢ ( card ‘ 𝐵 ) ∈ On |
15 |
|
onenon |
⊢ ( ( card ‘ 𝐵 ) ∈ On → ( card ‘ 𝐵 ) ∈ dom card ) |
16 |
14 15
|
ax-mp |
⊢ ( card ‘ 𝐵 ) ∈ dom card |
17 |
|
cardsdomel |
⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ On ∧ ( card ‘ 𝐵 ) ∈ dom card ) → ( ( ℵ ‘ 𝐴 ) ≺ ( card ‘ 𝐵 ) ↔ ( ℵ ‘ 𝐴 ) ∈ ( card ‘ ( card ‘ 𝐵 ) ) ) ) |
18 |
13 16 17
|
mp2an |
⊢ ( ( ℵ ‘ 𝐴 ) ≺ ( card ‘ 𝐵 ) ↔ ( ℵ ‘ 𝐴 ) ∈ ( card ‘ ( card ‘ 𝐵 ) ) ) |
19 |
1
|
eleq2i |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ ( card ‘ ( card ‘ 𝐵 ) ) ↔ ( ℵ ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ) |
20 |
18 19
|
bitri |
⊢ ( ( ℵ ‘ 𝐴 ) ≺ ( card ‘ 𝐵 ) ↔ ( ℵ ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ) |
21 |
12 20
|
sylib |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ∧ 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) ) → ( ℵ ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ) |
22 |
|
ensdomtr |
⊢ ( ( ( card ‘ 𝐵 ) ≈ 𝐵 ∧ 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) ) → ( card ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
23 |
9 22
|
mpancom |
⊢ ( 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) → ( card ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
24 |
23
|
adantl |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ∧ 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) ) → ( card ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
25 |
|
onenon |
⊢ ( ( ℵ ‘ suc 𝐴 ) ∈ On → ( ℵ ‘ suc 𝐴 ) ∈ dom card ) |
26 |
4 25
|
ax-mp |
⊢ ( ℵ ‘ suc 𝐴 ) ∈ dom card |
27 |
|
cardsdomel |
⊢ ( ( ( card ‘ 𝐵 ) ∈ On ∧ ( ℵ ‘ suc 𝐴 ) ∈ dom card ) → ( ( card ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐴 ) ↔ ( card ‘ 𝐵 ) ∈ ( card ‘ ( ℵ ‘ suc 𝐴 ) ) ) ) |
28 |
14 26 27
|
mp2an |
⊢ ( ( card ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐴 ) ↔ ( card ‘ 𝐵 ) ∈ ( card ‘ ( ℵ ‘ suc 𝐴 ) ) ) |
29 |
|
alephcard |
⊢ ( card ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) |
30 |
29
|
eleq2i |
⊢ ( ( card ‘ 𝐵 ) ∈ ( card ‘ ( ℵ ‘ suc 𝐴 ) ) ↔ ( card ‘ 𝐵 ) ∈ ( ℵ ‘ suc 𝐴 ) ) |
31 |
28 30
|
bitri |
⊢ ( ( card ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐴 ) ↔ ( card ‘ 𝐵 ) ∈ ( ℵ ‘ suc 𝐴 ) ) |
32 |
24 31
|
sylib |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ∧ 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) ) → ( card ‘ 𝐵 ) ∈ ( ℵ ‘ suc 𝐴 ) ) |
33 |
21 32
|
jca |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ∧ 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) ) → ( ( ℵ ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ∧ ( card ‘ 𝐵 ) ∈ ( ℵ ‘ suc 𝐴 ) ) ) |
34 |
3 33
|
mto |
⊢ ¬ ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ∧ 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) ) |