Step |
Hyp |
Ref |
Expression |
1 |
|
sdomirr |
⊢ ¬ ω ≺ ω |
2 |
|
2onn |
⊢ 2o ∈ ω |
3 |
2
|
elexi |
⊢ 2o ∈ V |
4 |
|
domrefg |
⊢ ( 2o ∈ V → 2o ≼ 2o ) |
5 |
3
|
cfpwsdom |
⊢ ( 2o ≼ 2o → ( ℵ ‘ ∅ ) ≺ ( cf ‘ ( card ‘ ( 2o ↑m ( ℵ ‘ ∅ ) ) ) ) ) |
6 |
3 4 5
|
mp2b |
⊢ ( ℵ ‘ ∅ ) ≺ ( cf ‘ ( card ‘ ( 2o ↑m ( ℵ ‘ ∅ ) ) ) ) |
7 |
|
aleph0 |
⊢ ( ℵ ‘ ∅ ) = ω |
8 |
7
|
a1i |
⊢ ( ( card ‘ ( 2o ↑m ω ) ) = ( ℵ ‘ ω ) → ( ℵ ‘ ∅ ) = ω ) |
9 |
7
|
oveq2i |
⊢ ( 2o ↑m ( ℵ ‘ ∅ ) ) = ( 2o ↑m ω ) |
10 |
9
|
fveq2i |
⊢ ( card ‘ ( 2o ↑m ( ℵ ‘ ∅ ) ) ) = ( card ‘ ( 2o ↑m ω ) ) |
11 |
10
|
eqeq1i |
⊢ ( ( card ‘ ( 2o ↑m ( ℵ ‘ ∅ ) ) ) = ( ℵ ‘ ω ) ↔ ( card ‘ ( 2o ↑m ω ) ) = ( ℵ ‘ ω ) ) |
12 |
11
|
biimpri |
⊢ ( ( card ‘ ( 2o ↑m ω ) ) = ( ℵ ‘ ω ) → ( card ‘ ( 2o ↑m ( ℵ ‘ ∅ ) ) ) = ( ℵ ‘ ω ) ) |
13 |
12
|
fveq2d |
⊢ ( ( card ‘ ( 2o ↑m ω ) ) = ( ℵ ‘ ω ) → ( cf ‘ ( card ‘ ( 2o ↑m ( ℵ ‘ ∅ ) ) ) ) = ( cf ‘ ( ℵ ‘ ω ) ) ) |
14 |
|
limom |
⊢ Lim ω |
15 |
|
alephsing |
⊢ ( Lim ω → ( cf ‘ ( ℵ ‘ ω ) ) = ( cf ‘ ω ) ) |
16 |
14 15
|
ax-mp |
⊢ ( cf ‘ ( ℵ ‘ ω ) ) = ( cf ‘ ω ) |
17 |
|
cfom |
⊢ ( cf ‘ ω ) = ω |
18 |
16 17
|
eqtri |
⊢ ( cf ‘ ( ℵ ‘ ω ) ) = ω |
19 |
13 18
|
eqtrdi |
⊢ ( ( card ‘ ( 2o ↑m ω ) ) = ( ℵ ‘ ω ) → ( cf ‘ ( card ‘ ( 2o ↑m ( ℵ ‘ ∅ ) ) ) ) = ω ) |
20 |
8 19
|
breq12d |
⊢ ( ( card ‘ ( 2o ↑m ω ) ) = ( ℵ ‘ ω ) → ( ( ℵ ‘ ∅ ) ≺ ( cf ‘ ( card ‘ ( 2o ↑m ( ℵ ‘ ∅ ) ) ) ) ↔ ω ≺ ω ) ) |
21 |
6 20
|
mpbii |
⊢ ( ( card ‘ ( 2o ↑m ω ) ) = ( ℵ ‘ ω ) → ω ≺ ω ) |
22 |
21
|
necon3bi |
⊢ ( ¬ ω ≺ ω → ( card ‘ ( 2o ↑m ω ) ) ≠ ( ℵ ‘ ω ) ) |
23 |
1 22
|
ax-mp |
⊢ ( card ‘ ( 2o ↑m ω ) ) ≠ ( ℵ ‘ ω ) |