Metamath Proof Explorer


Theorem alephon

Description: An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Assertion alephon ( ℵ ‘ 𝐴 ) ∈ On

Proof

Step Hyp Ref Expression
1 alephfnon ℵ Fn On
2 fveq2 ( 𝑥 = ∅ → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ ∅ ) )
3 2 eleq1d ( 𝑥 = ∅ → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ ( ℵ ‘ ∅ ) ∈ On ) )
4 fveq2 ( 𝑥 = 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝑦 ) )
5 4 eleq1d ( 𝑥 = 𝑦 → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ ( ℵ ‘ 𝑦 ) ∈ On ) )
6 fveq2 ( 𝑥 = suc 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ suc 𝑦 ) )
7 6 eleq1d ( 𝑥 = suc 𝑦 → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ ( ℵ ‘ suc 𝑦 ) ∈ On ) )
8 aleph0 ( ℵ ‘ ∅ ) = ω
9 omelon ω ∈ On
10 8 9 eqeltri ( ℵ ‘ ∅ ) ∈ On
11 alephsuc ( 𝑦 ∈ On → ( ℵ ‘ suc 𝑦 ) = ( har ‘ ( ℵ ‘ 𝑦 ) ) )
12 harcl ( har ‘ ( ℵ ‘ 𝑦 ) ) ∈ On
13 11 12 eqeltrdi ( 𝑦 ∈ On → ( ℵ ‘ suc 𝑦 ) ∈ On )
14 13 a1d ( 𝑦 ∈ On → ( ( ℵ ‘ 𝑦 ) ∈ On → ( ℵ ‘ suc 𝑦 ) ∈ On ) )
15 vex 𝑥 ∈ V
16 iunon ( ( 𝑥 ∈ V ∧ ∀ 𝑦𝑥 ( ℵ ‘ 𝑦 ) ∈ On ) → 𝑦𝑥 ( ℵ ‘ 𝑦 ) ∈ On )
17 15 16 mpan ( ∀ 𝑦𝑥 ( ℵ ‘ 𝑦 ) ∈ On → 𝑦𝑥 ( ℵ ‘ 𝑦 ) ∈ On )
18 alephlim ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( ℵ ‘ 𝑥 ) = 𝑦𝑥 ( ℵ ‘ 𝑦 ) )
19 15 18 mpan ( Lim 𝑥 → ( ℵ ‘ 𝑥 ) = 𝑦𝑥 ( ℵ ‘ 𝑦 ) )
20 19 eleq1d ( Lim 𝑥 → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ 𝑦𝑥 ( ℵ ‘ 𝑦 ) ∈ On ) )
21 17 20 syl5ibr ( Lim 𝑥 → ( ∀ 𝑦𝑥 ( ℵ ‘ 𝑦 ) ∈ On → ( ℵ ‘ 𝑥 ) ∈ On ) )
22 3 5 7 5 10 14 21 tfinds ( 𝑦 ∈ On → ( ℵ ‘ 𝑦 ) ∈ On )
23 22 rgen 𝑦 ∈ On ( ℵ ‘ 𝑦 ) ∈ On
24 ffnfv ( ℵ : On ⟶ On ↔ ( ℵ Fn On ∧ ∀ 𝑦 ∈ On ( ℵ ‘ 𝑦 ) ∈ On ) )
25 1 23 24 mpbir2an ℵ : On ⟶ On
26 0elon ∅ ∈ On
27 25 26 f0cli ( ℵ ‘ 𝐴 ) ∈ On