| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephfnon |
⊢ ℵ Fn On |
| 2 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ ∅ ) ) |
| 3 |
2
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ ( ℵ ‘ ∅ ) ∈ On ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝑦 ) ) |
| 5 |
4
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ ( ℵ ‘ 𝑦 ) ∈ On ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ suc 𝑦 ) ) |
| 7 |
6
|
eleq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ ( ℵ ‘ suc 𝑦 ) ∈ On ) ) |
| 8 |
|
aleph0 |
⊢ ( ℵ ‘ ∅ ) = ω |
| 9 |
|
omelon |
⊢ ω ∈ On |
| 10 |
8 9
|
eqeltri |
⊢ ( ℵ ‘ ∅ ) ∈ On |
| 11 |
|
alephsuc |
⊢ ( 𝑦 ∈ On → ( ℵ ‘ suc 𝑦 ) = ( har ‘ ( ℵ ‘ 𝑦 ) ) ) |
| 12 |
|
harcl |
⊢ ( har ‘ ( ℵ ‘ 𝑦 ) ) ∈ On |
| 13 |
11 12
|
eqeltrdi |
⊢ ( 𝑦 ∈ On → ( ℵ ‘ suc 𝑦 ) ∈ On ) |
| 14 |
13
|
a1d |
⊢ ( 𝑦 ∈ On → ( ( ℵ ‘ 𝑦 ) ∈ On → ( ℵ ‘ suc 𝑦 ) ∈ On ) ) |
| 15 |
|
vex |
⊢ 𝑥 ∈ V |
| 16 |
|
iunon |
⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On ) → ∪ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On ) |
| 17 |
15 16
|
mpan |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On → ∪ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On ) |
| 18 |
|
alephlim |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( ℵ ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ) |
| 19 |
15 18
|
mpan |
⊢ ( Lim 𝑥 → ( ℵ ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ) |
| 20 |
19
|
eleq1d |
⊢ ( Lim 𝑥 → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On ) ) |
| 21 |
17 20
|
imbitrrid |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On → ( ℵ ‘ 𝑥 ) ∈ On ) ) |
| 22 |
3 5 7 5 10 14 21
|
tfinds |
⊢ ( 𝑦 ∈ On → ( ℵ ‘ 𝑦 ) ∈ On ) |
| 23 |
22
|
rgen |
⊢ ∀ 𝑦 ∈ On ( ℵ ‘ 𝑦 ) ∈ On |
| 24 |
|
ffnfv |
⊢ ( ℵ : On ⟶ On ↔ ( ℵ Fn On ∧ ∀ 𝑦 ∈ On ( ℵ ‘ 𝑦 ) ∈ On ) ) |
| 25 |
1 23 24
|
mpbir2an |
⊢ ℵ : On ⟶ On |
| 26 |
|
0elon |
⊢ ∅ ∈ On |
| 27 |
25 26
|
f0cli |
⊢ ( ℵ ‘ 𝐴 ) ∈ On |