| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alephfnon | ⊢ ℵ  Fn  On | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑥  =  ∅  →  ( ℵ ‘ 𝑥 )  =  ( ℵ ‘ ∅ ) ) | 
						
							| 3 | 2 | eleq1d | ⊢ ( 𝑥  =  ∅  →  ( ( ℵ ‘ 𝑥 )  ∈  On  ↔  ( ℵ ‘ ∅ )  ∈  On ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ℵ ‘ 𝑥 )  =  ( ℵ ‘ 𝑦 ) ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( ℵ ‘ 𝑥 )  ∈  On  ↔  ( ℵ ‘ 𝑦 )  ∈  On ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( ℵ ‘ 𝑥 )  =  ( ℵ ‘ suc  𝑦 ) ) | 
						
							| 7 | 6 | eleq1d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( ℵ ‘ 𝑥 )  ∈  On  ↔  ( ℵ ‘ suc  𝑦 )  ∈  On ) ) | 
						
							| 8 |  | aleph0 | ⊢ ( ℵ ‘ ∅ )  =  ω | 
						
							| 9 |  | omelon | ⊢ ω  ∈  On | 
						
							| 10 | 8 9 | eqeltri | ⊢ ( ℵ ‘ ∅ )  ∈  On | 
						
							| 11 |  | alephsuc | ⊢ ( 𝑦  ∈  On  →  ( ℵ ‘ suc  𝑦 )  =  ( har ‘ ( ℵ ‘ 𝑦 ) ) ) | 
						
							| 12 |  | harcl | ⊢ ( har ‘ ( ℵ ‘ 𝑦 ) )  ∈  On | 
						
							| 13 | 11 12 | eqeltrdi | ⊢ ( 𝑦  ∈  On  →  ( ℵ ‘ suc  𝑦 )  ∈  On ) | 
						
							| 14 | 13 | a1d | ⊢ ( 𝑦  ∈  On  →  ( ( ℵ ‘ 𝑦 )  ∈  On  →  ( ℵ ‘ suc  𝑦 )  ∈  On ) ) | 
						
							| 15 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 16 |  | iunon | ⊢ ( ( 𝑥  ∈  V  ∧  ∀ 𝑦  ∈  𝑥 ( ℵ ‘ 𝑦 )  ∈  On )  →  ∪  𝑦  ∈  𝑥 ( ℵ ‘ 𝑦 )  ∈  On ) | 
						
							| 17 | 15 16 | mpan | ⊢ ( ∀ 𝑦  ∈  𝑥 ( ℵ ‘ 𝑦 )  ∈  On  →  ∪  𝑦  ∈  𝑥 ( ℵ ‘ 𝑦 )  ∈  On ) | 
						
							| 18 |  | alephlim | ⊢ ( ( 𝑥  ∈  V  ∧  Lim  𝑥 )  →  ( ℵ ‘ 𝑥 )  =  ∪  𝑦  ∈  𝑥 ( ℵ ‘ 𝑦 ) ) | 
						
							| 19 | 15 18 | mpan | ⊢ ( Lim  𝑥  →  ( ℵ ‘ 𝑥 )  =  ∪  𝑦  ∈  𝑥 ( ℵ ‘ 𝑦 ) ) | 
						
							| 20 | 19 | eleq1d | ⊢ ( Lim  𝑥  →  ( ( ℵ ‘ 𝑥 )  ∈  On  ↔  ∪  𝑦  ∈  𝑥 ( ℵ ‘ 𝑦 )  ∈  On ) ) | 
						
							| 21 | 17 20 | imbitrrid | ⊢ ( Lim  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( ℵ ‘ 𝑦 )  ∈  On  →  ( ℵ ‘ 𝑥 )  ∈  On ) ) | 
						
							| 22 | 3 5 7 5 10 14 21 | tfinds | ⊢ ( 𝑦  ∈  On  →  ( ℵ ‘ 𝑦 )  ∈  On ) | 
						
							| 23 | 22 | rgen | ⊢ ∀ 𝑦  ∈  On ( ℵ ‘ 𝑦 )  ∈  On | 
						
							| 24 |  | ffnfv | ⊢ ( ℵ : On ⟶ On  ↔  ( ℵ  Fn  On  ∧  ∀ 𝑦  ∈  On ( ℵ ‘ 𝑦 )  ∈  On ) ) | 
						
							| 25 | 1 23 24 | mpbir2an | ⊢ ℵ : On ⟶ On | 
						
							| 26 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 27 | 25 26 | f0cli | ⊢ ( ℵ ‘ 𝐴 )  ∈  On |