Step |
Hyp |
Ref |
Expression |
1 |
|
alephfnon |
⊢ ℵ Fn On |
2 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ ∅ ) ) |
3 |
2
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ ( ℵ ‘ ∅ ) ∈ On ) ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝑦 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ ( ℵ ‘ 𝑦 ) ∈ On ) ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ suc 𝑦 ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ ( ℵ ‘ suc 𝑦 ) ∈ On ) ) |
8 |
|
aleph0 |
⊢ ( ℵ ‘ ∅ ) = ω |
9 |
|
omelon |
⊢ ω ∈ On |
10 |
8 9
|
eqeltri |
⊢ ( ℵ ‘ ∅ ) ∈ On |
11 |
|
alephsuc |
⊢ ( 𝑦 ∈ On → ( ℵ ‘ suc 𝑦 ) = ( har ‘ ( ℵ ‘ 𝑦 ) ) ) |
12 |
|
harcl |
⊢ ( har ‘ ( ℵ ‘ 𝑦 ) ) ∈ On |
13 |
11 12
|
eqeltrdi |
⊢ ( 𝑦 ∈ On → ( ℵ ‘ suc 𝑦 ) ∈ On ) |
14 |
13
|
a1d |
⊢ ( 𝑦 ∈ On → ( ( ℵ ‘ 𝑦 ) ∈ On → ( ℵ ‘ suc 𝑦 ) ∈ On ) ) |
15 |
|
vex |
⊢ 𝑥 ∈ V |
16 |
|
iunon |
⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On ) → ∪ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On ) |
17 |
15 16
|
mpan |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On → ∪ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On ) |
18 |
|
alephlim |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( ℵ ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ) |
19 |
15 18
|
mpan |
⊢ ( Lim 𝑥 → ( ℵ ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ) |
20 |
19
|
eleq1d |
⊢ ( Lim 𝑥 → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On ) ) |
21 |
17 20
|
syl5ibr |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On → ( ℵ ‘ 𝑥 ) ∈ On ) ) |
22 |
3 5 7 5 10 14 21
|
tfinds |
⊢ ( 𝑦 ∈ On → ( ℵ ‘ 𝑦 ) ∈ On ) |
23 |
22
|
rgen |
⊢ ∀ 𝑦 ∈ On ( ℵ ‘ 𝑦 ) ∈ On |
24 |
|
ffnfv |
⊢ ( ℵ : On ⟶ On ↔ ( ℵ Fn On ∧ ∀ 𝑦 ∈ On ( ℵ ‘ 𝑦 ) ∈ On ) ) |
25 |
1 23 24
|
mpbir2an |
⊢ ℵ : On ⟶ On |
26 |
|
0elon |
⊢ ∅ ∈ On |
27 |
25 26
|
f0cli |
⊢ ( ℵ ‘ 𝐴 ) ∈ On |