Step |
Hyp |
Ref |
Expression |
1 |
|
alephordi |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) |
2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) |
3 |
|
brsdom |
⊢ ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ↔ ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ∧ ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) ) ) |
4 |
|
alephon |
⊢ ( ℵ ‘ 𝐴 ) ∈ On |
5 |
|
alephon |
⊢ ( ℵ ‘ 𝐵 ) ∈ On |
6 |
|
domtriord |
⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ On ∧ ( ℵ ‘ 𝐵 ) ∈ On ) → ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ↔ ¬ ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ 𝐴 ) ) ) |
7 |
4 5 6
|
mp2an |
⊢ ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ↔ ¬ ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ 𝐴 ) ) |
8 |
|
alephordi |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ 𝐴 → ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ 𝐴 ) ) ) |
9 |
8
|
con3d |
⊢ ( 𝐴 ∈ On → ( ¬ ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ 𝐴 ) → ¬ 𝐵 ∈ 𝐴 ) ) |
10 |
7 9
|
syl5bi |
⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) → ¬ 𝐵 ∈ 𝐴 ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) → ¬ 𝐵 ∈ 𝐴 ) ) |
12 |
|
ontri1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
13 |
11 12
|
sylibrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) → 𝐴 ⊆ 𝐵 ) ) |
14 |
|
fveq2 |
⊢ ( 𝐴 = 𝐵 → ( ℵ ‘ 𝐴 ) = ( ℵ ‘ 𝐵 ) ) |
15 |
|
eqeng |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ( ℵ ‘ 𝐴 ) = ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) ) ) |
16 |
4 14 15
|
mpsyl |
⊢ ( 𝐴 = 𝐵 → ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) ) |
17 |
16
|
necon3bi |
⊢ ( ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
18 |
13 17
|
anim12d1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ∧ ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) ) → ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) |
19 |
|
onelpss |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) |
20 |
18 19
|
sylibrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ∧ ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) ) → 𝐴 ∈ 𝐵 ) ) |
21 |
3 20
|
syl5bi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
22 |
2 21
|
impbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) |