Metamath Proof Explorer


Theorem alephord2i

Description: Ordering property of the aleph function. Theorem 66 of Suppes p. 229. (Contributed by NM, 25-Oct-2003)

Ref Expression
Assertion alephord2i ( 𝐵 ∈ On → ( 𝐴𝐵 → ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 onelon ( ( 𝐵 ∈ On ∧ 𝐴𝐵 ) → 𝐴 ∈ On )
2 alephord2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) ) )
3 2 biimpd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 → ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) ) )
4 3 expimpd ( 𝐴 ∈ On → ( ( 𝐵 ∈ On ∧ 𝐴𝐵 ) → ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) ) )
5 1 4 mpcom ( ( 𝐵 ∈ On ∧ 𝐴𝐵 ) → ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) )
6 5 ex ( 𝐵 ∈ On → ( 𝐴𝐵 → ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) ) )