Description: Ordering property of the aleph function. Theorem 66 of Suppes p. 229. (Contributed by NM, 25-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | alephord2i | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) | |
2 | alephord2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) ) ) | |
3 | 2 | biimpd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) ) ) |
4 | 3 | expimpd | ⊢ ( 𝐴 ∈ On → ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) ) ) |
5 | 1 4 | mpcom | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) ) |
6 | 5 | ex | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) ) ) |