Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ∅ ) ) |
2 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ ∅ ) ) |
3 |
2
|
breq2d |
⊢ ( 𝑥 = ∅ → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ↔ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ ∅ ) ) ) |
4 |
1 3
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ) ↔ ( 𝐴 ∈ ∅ → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ ∅ ) ) ) ) |
5 |
|
eleq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝑦 ) ) |
7 |
6
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ↔ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) ) |
8 |
5 7
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ) ↔ ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) ) ) |
9 |
|
eleq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ suc 𝑦 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ suc 𝑦 ) ) |
11 |
10
|
breq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ↔ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) |
12 |
9 11
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ) ↔ ( 𝐴 ∈ suc 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
13 |
|
eleq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝐵 ) ) |
15 |
14
|
breq2d |
⊢ ( 𝑥 = 𝐵 → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ↔ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) |
16 |
13 15
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ) ↔ ( 𝐴 ∈ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) ) |
17 |
|
noel |
⊢ ¬ 𝐴 ∈ ∅ |
18 |
17
|
pm2.21i |
⊢ ( 𝐴 ∈ ∅ → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ ∅ ) ) |
19 |
|
vex |
⊢ 𝑦 ∈ V |
20 |
19
|
elsuc2 |
⊢ ( 𝐴 ∈ suc 𝑦 ↔ ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) ) |
21 |
|
alephordilem1 |
⊢ ( 𝑦 ∈ On → ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ suc 𝑦 ) ) |
22 |
|
sdomtr |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ∧ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ suc 𝑦 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) |
23 |
21 22
|
sylan2 |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ∧ 𝑦 ∈ On ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) |
24 |
23
|
expcom |
⊢ ( 𝑦 ∈ On → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) |
25 |
24
|
imim2d |
⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
26 |
25
|
com23 |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ 𝑦 → ( ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
27 |
|
fveq2 |
⊢ ( 𝐴 = 𝑦 → ( ℵ ‘ 𝐴 ) = ( ℵ ‘ 𝑦 ) ) |
28 |
27
|
breq1d |
⊢ ( 𝐴 = 𝑦 → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) |
29 |
21 28
|
syl5ibr |
⊢ ( 𝐴 = 𝑦 → ( 𝑦 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) |
30 |
29
|
a1d |
⊢ ( 𝐴 = 𝑦 → ( ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( 𝑦 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
31 |
30
|
com3r |
⊢ ( 𝑦 ∈ On → ( 𝐴 = 𝑦 → ( ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
32 |
26 31
|
jaod |
⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) → ( ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
33 |
20 32
|
syl5bi |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ suc 𝑦 → ( ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
34 |
33
|
com23 |
⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
35 |
|
fvexd |
⊢ ( Lim 𝑥 → ( ℵ ‘ 𝑥 ) ∈ V ) |
36 |
|
fveq2 |
⊢ ( 𝑤 = 𝐴 → ( ℵ ‘ 𝑤 ) = ( ℵ ‘ 𝐴 ) ) |
37 |
36
|
ssiun2s |
⊢ ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ⊆ ∪ 𝑤 ∈ 𝑥 ( ℵ ‘ 𝑤 ) ) |
38 |
|
vex |
⊢ 𝑥 ∈ V |
39 |
|
alephlim |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( ℵ ‘ 𝑥 ) = ∪ 𝑤 ∈ 𝑥 ( ℵ ‘ 𝑤 ) ) |
40 |
38 39
|
mpan |
⊢ ( Lim 𝑥 → ( ℵ ‘ 𝑥 ) = ∪ 𝑤 ∈ 𝑥 ( ℵ ‘ 𝑤 ) ) |
41 |
40
|
sseq2d |
⊢ ( Lim 𝑥 → ( ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝑥 ) ↔ ( ℵ ‘ 𝐴 ) ⊆ ∪ 𝑤 ∈ 𝑥 ( ℵ ‘ 𝑤 ) ) ) |
42 |
37 41
|
syl5ibr |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝑥 ) ) ) |
43 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝑥 ) ∈ V → ( ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝑥 ) → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ) ) |
44 |
35 42 43
|
sylsyld |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ) ) |
45 |
|
limsuc |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ∈ 𝑥 ) ) |
46 |
|
fveq2 |
⊢ ( 𝑤 = suc 𝐴 → ( ℵ ‘ 𝑤 ) = ( ℵ ‘ suc 𝐴 ) ) |
47 |
46
|
ssiun2s |
⊢ ( suc 𝐴 ∈ 𝑥 → ( ℵ ‘ suc 𝐴 ) ⊆ ∪ 𝑤 ∈ 𝑥 ( ℵ ‘ 𝑤 ) ) |
48 |
40
|
sseq2d |
⊢ ( Lim 𝑥 → ( ( ℵ ‘ suc 𝐴 ) ⊆ ( ℵ ‘ 𝑥 ) ↔ ( ℵ ‘ suc 𝐴 ) ⊆ ∪ 𝑤 ∈ 𝑥 ( ℵ ‘ 𝑤 ) ) ) |
49 |
47 48
|
syl5ibr |
⊢ ( Lim 𝑥 → ( suc 𝐴 ∈ 𝑥 → ( ℵ ‘ suc 𝐴 ) ⊆ ( ℵ ‘ 𝑥 ) ) ) |
50 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝑥 ) ∈ V → ( ( ℵ ‘ suc 𝐴 ) ⊆ ( ℵ ‘ 𝑥 ) → ( ℵ ‘ suc 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ) ) |
51 |
35 49 50
|
sylsyld |
⊢ ( Lim 𝑥 → ( suc 𝐴 ∈ 𝑥 → ( ℵ ‘ suc 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ) ) |
52 |
45 51
|
sylbid |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 → ( ℵ ‘ suc 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ) ) |
53 |
52
|
imp |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ( ℵ ‘ suc 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ) |
54 |
|
domnsym |
⊢ ( ( ℵ ‘ suc 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) → ¬ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
55 |
53 54
|
syl |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ¬ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
56 |
|
limelon |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) |
57 |
38 56
|
mpan |
⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
58 |
|
onelon |
⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ∈ 𝑥 ) → 𝐴 ∈ On ) |
59 |
57 58
|
sylan |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → 𝐴 ∈ On ) |
60 |
|
ensym |
⊢ ( ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝑥 ) → ( ℵ ‘ 𝑥 ) ≈ ( ℵ ‘ 𝐴 ) ) |
61 |
|
alephordilem1 |
⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
62 |
|
ensdomtr |
⊢ ( ( ( ℵ ‘ 𝑥 ) ≈ ( ℵ ‘ 𝐴 ) ∧ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) → ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
63 |
62
|
ex |
⊢ ( ( ℵ ‘ 𝑥 ) ≈ ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) → ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
64 |
60 61 63
|
syl2im |
⊢ ( ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝑥 ) → ( 𝐴 ∈ On → ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
65 |
59 64
|
syl5com |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ( ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝑥 ) → ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
66 |
55 65
|
mtod |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝑥 ) ) |
67 |
66
|
ex |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 → ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝑥 ) ) ) |
68 |
44 67
|
jcad |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 → ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ∧ ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝑥 ) ) ) ) |
69 |
|
brsdom |
⊢ ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ↔ ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ∧ ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝑥 ) ) ) |
70 |
68 69
|
syl6ibr |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ) ) |
71 |
70
|
a1d |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ) ) ) |
72 |
4 8 12 16 18 34 71
|
tfinds |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) |