Description: Lemma for alephordi . (Contributed by NM, 23-Oct-2009) (Revised by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | alephordilem1 | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
2 | onenon | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ℵ ‘ 𝐴 ) ∈ dom card ) | |
3 | harsdom | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ dom card → ( ℵ ‘ 𝐴 ) ≺ ( har ‘ ( ℵ ‘ 𝐴 ) ) ) | |
4 | 1 2 3 | mp2b | ⊢ ( ℵ ‘ 𝐴 ) ≺ ( har ‘ ( ℵ ‘ 𝐴 ) ) |
5 | alephsuc | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) = ( har ‘ ( ℵ ‘ 𝐴 ) ) ) | |
6 | 4 5 | breqtrrid | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |