Metamath Proof Explorer


Theorem alephordilem1

Description: Lemma for alephordi . (Contributed by NM, 23-Oct-2009) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion alephordilem1 ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) )

Proof

Step Hyp Ref Expression
1 alephon ( ℵ ‘ 𝐴 ) ∈ On
2 onenon ( ( ℵ ‘ 𝐴 ) ∈ On → ( ℵ ‘ 𝐴 ) ∈ dom card )
3 harsdom ( ( ℵ ‘ 𝐴 ) ∈ dom card → ( ℵ ‘ 𝐴 ) ≺ ( har ‘ ( ℵ ‘ 𝐴 ) ) )
4 1 2 3 mp2b ( ℵ ‘ 𝐴 ) ≺ ( har ‘ ( ℵ ‘ 𝐴 ) )
5 alephsuc ( 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) = ( har ‘ ( ℵ ‘ 𝐴 ) ) )
6 4 5 breqtrrid ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) )