Description: The class of all transfinite cardinal numbers (the range of the aleph function) is a proper class. Proposition 10.26 of TakeutiZaring p. 90. (Contributed by NM, 11-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | alephprc | ⊢ ¬ ran ℵ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardprc | ⊢ { 𝑥 ∣ ( card ‘ 𝑥 ) = 𝑥 } ∉ V | |
2 | 1 | neli | ⊢ ¬ { 𝑥 ∣ ( card ‘ 𝑥 ) = 𝑥 } ∈ V |
3 | cardnum | ⊢ { 𝑥 ∣ ( card ‘ 𝑥 ) = 𝑥 } = ( ω ∪ ran ℵ ) | |
4 | 3 | eleq1i | ⊢ ( { 𝑥 ∣ ( card ‘ 𝑥 ) = 𝑥 } ∈ V ↔ ( ω ∪ ran ℵ ) ∈ V ) |
5 | 2 4 | mtbi | ⊢ ¬ ( ω ∪ ran ℵ ) ∈ V |
6 | omex | ⊢ ω ∈ V | |
7 | unexg | ⊢ ( ( ω ∈ V ∧ ran ℵ ∈ V ) → ( ω ∪ ran ℵ ) ∈ V ) | |
8 | 6 7 | mpan | ⊢ ( ran ℵ ∈ V → ( ω ∪ ran ℵ ) ∈ V ) |
9 | 5 8 | mto | ⊢ ¬ ran ℵ ∈ V |