Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ∈ On ) |
2 |
|
alephon |
⊢ ( ℵ ‘ 𝐵 ) ∈ On |
3 |
|
onenon |
⊢ ( ( ℵ ‘ 𝐵 ) ∈ On → ( ℵ ‘ 𝐵 ) ∈ dom card ) |
4 |
2 3
|
ax-mp |
⊢ ( ℵ ‘ 𝐵 ) ∈ dom card |
5 |
|
cardsdomel |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐵 ) ∈ dom card ) → ( 𝐴 ≺ ( ℵ ‘ 𝐵 ) ↔ 𝐴 ∈ ( card ‘ ( ℵ ‘ 𝐵 ) ) ) ) |
6 |
1 4 5
|
sylancl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≺ ( ℵ ‘ 𝐵 ) ↔ 𝐴 ∈ ( card ‘ ( ℵ ‘ 𝐵 ) ) ) ) |
7 |
|
alephcard |
⊢ ( card ‘ ( ℵ ‘ 𝐵 ) ) = ( ℵ ‘ 𝐵 ) |
8 |
7
|
eleq2i |
⊢ ( 𝐴 ∈ ( card ‘ ( ℵ ‘ 𝐵 ) ) ↔ 𝐴 ∈ ( ℵ ‘ 𝐵 ) ) |
9 |
6 8
|
bitr2di |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ ( ℵ ‘ 𝐵 ) ↔ 𝐴 ≺ ( ℵ ‘ 𝐵 ) ) ) |