Step |
Hyp |
Ref |
Expression |
1 |
|
alephfnon |
⊢ ℵ Fn On |
2 |
|
fnfun |
⊢ ( ℵ Fn On → Fun ℵ ) |
3 |
1 2
|
ax-mp |
⊢ Fun ℵ |
4 |
|
simpl |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ∈ V ) |
5 |
|
resfunexg |
⊢ ( ( Fun ℵ ∧ 𝐴 ∈ V ) → ( ℵ ↾ 𝐴 ) ∈ V ) |
6 |
3 4 5
|
sylancr |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ↾ 𝐴 ) ∈ V ) |
7 |
|
limelon |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ∈ On ) |
8 |
|
onss |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ⊆ On ) |
10 |
|
fnssres |
⊢ ( ( ℵ Fn On ∧ 𝐴 ⊆ On ) → ( ℵ ↾ 𝐴 ) Fn 𝐴 ) |
11 |
1 9 10
|
sylancr |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ↾ 𝐴 ) Fn 𝐴 ) |
12 |
|
fvres |
⊢ ( 𝑦 ∈ 𝐴 → ( ( ℵ ↾ 𝐴 ) ‘ 𝑦 ) = ( ℵ ‘ 𝑦 ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → ( ( ℵ ↾ 𝐴 ) ‘ 𝑦 ) = ( ℵ ‘ 𝑦 ) ) |
14 |
|
alephord2i |
⊢ ( 𝐴 ∈ On → ( 𝑦 ∈ 𝐴 → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
15 |
14
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) |
16 |
13 15
|
eqeltrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → ( ( ℵ ↾ 𝐴 ) ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) |
17 |
7 16
|
sylan |
⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( ℵ ↾ 𝐴 ) ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) |
18 |
17
|
ralrimiva |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ∀ 𝑦 ∈ 𝐴 ( ( ℵ ↾ 𝐴 ) ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) |
19 |
|
fnfvrnss |
⊢ ( ( ( ℵ ↾ 𝐴 ) Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ( ℵ ↾ 𝐴 ) ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) → ran ( ℵ ↾ 𝐴 ) ⊆ ( ℵ ‘ 𝐴 ) ) |
20 |
11 18 19
|
syl2anc |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ran ( ℵ ↾ 𝐴 ) ⊆ ( ℵ ‘ 𝐴 ) ) |
21 |
|
df-f |
⊢ ( ( ℵ ↾ 𝐴 ) : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ↔ ( ( ℵ ↾ 𝐴 ) Fn 𝐴 ∧ ran ( ℵ ↾ 𝐴 ) ⊆ ( ℵ ‘ 𝐴 ) ) ) |
22 |
11 20 21
|
sylanbrc |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ↾ 𝐴 ) : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ) |
23 |
|
alephsmo |
⊢ Smo ℵ |
24 |
1
|
fndmi |
⊢ dom ℵ = On |
25 |
7 24
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ∈ dom ℵ ) |
26 |
|
smores |
⊢ ( ( Smo ℵ ∧ 𝐴 ∈ dom ℵ ) → Smo ( ℵ ↾ 𝐴 ) ) |
27 |
23 25 26
|
sylancr |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → Smo ( ℵ ↾ 𝐴 ) ) |
28 |
|
alephlim |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) = ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ) |
29 |
28
|
eleq2d |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( 𝑥 ∈ ( ℵ ‘ 𝐴 ) ↔ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ) ) |
30 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( ℵ ‘ 𝑦 ) ) |
31 |
|
alephon |
⊢ ( ℵ ‘ 𝑦 ) ∈ On |
32 |
31
|
onelssi |
⊢ ( 𝑥 ∈ ( ℵ ‘ 𝑦 ) → 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) |
33 |
32
|
reximi |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( ℵ ‘ 𝑦 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) |
34 |
30 33
|
sylbi |
⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) |
35 |
29 34
|
syl6bi |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( 𝑥 ∈ ( ℵ ‘ 𝐴 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
36 |
35
|
ralrimiv |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) |
37 |
|
feq1 |
⊢ ( 𝑓 = ( ℵ ↾ 𝐴 ) → ( 𝑓 : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ↔ ( ℵ ↾ 𝐴 ) : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ) ) |
38 |
|
smoeq |
⊢ ( 𝑓 = ( ℵ ↾ 𝐴 ) → ( Smo 𝑓 ↔ Smo ( ℵ ↾ 𝐴 ) ) ) |
39 |
|
fveq1 |
⊢ ( 𝑓 = ( ℵ ↾ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) = ( ( ℵ ↾ 𝐴 ) ‘ 𝑦 ) ) |
40 |
39 12
|
sylan9eq |
⊢ ( ( 𝑓 = ( ℵ ↾ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) = ( ℵ ‘ 𝑦 ) ) |
41 |
40
|
sseq2d |
⊢ ( ( 𝑓 = ( ℵ ↾ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
42 |
41
|
rexbidva |
⊢ ( 𝑓 = ( ℵ ↾ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
43 |
42
|
ralbidv |
⊢ ( 𝑓 = ( ℵ ↾ 𝐴 ) → ( ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
44 |
37 38 43
|
3anbi123d |
⊢ ( 𝑓 = ( ℵ ↾ 𝐴 ) → ( ( 𝑓 : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ↔ ( ( ℵ ↾ 𝐴 ) : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo ( ℵ ↾ 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) ) ) |
45 |
44
|
spcegv |
⊢ ( ( ℵ ↾ 𝐴 ) ∈ V → ( ( ( ℵ ↾ 𝐴 ) : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo ( ℵ ↾ 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) ) |
46 |
45
|
imp |
⊢ ( ( ( ℵ ↾ 𝐴 ) ∈ V ∧ ( ( ℵ ↾ 𝐴 ) : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo ( ℵ ↾ 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
47 |
6 22 27 36 46
|
syl13anc |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
48 |
|
alephon |
⊢ ( ℵ ‘ 𝐴 ) ∈ On |
49 |
|
cfcof |
⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ On ∧ 𝐴 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) ) ) |
50 |
48 7 49
|
sylancr |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) ) ) |
51 |
47 50
|
mpd |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) ) |
52 |
51
|
expcom |
⊢ ( Lim 𝐴 → ( 𝐴 ∈ V → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) ) ) |
53 |
|
cf0 |
⊢ ( cf ‘ ∅ ) = ∅ |
54 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( ℵ ‘ 𝐴 ) = ∅ ) |
55 |
54
|
fveq2d |
⊢ ( ¬ 𝐴 ∈ V → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ ∅ ) ) |
56 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( cf ‘ 𝐴 ) = ∅ ) |
57 |
53 55 56
|
3eqtr4a |
⊢ ( ¬ 𝐴 ∈ V → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) ) |
58 |
52 57
|
pm2.61d1 |
⊢ ( Lim 𝐴 → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) ) |