Metamath Proof Explorer


Theorem alephsmo

Description: The aleph function is strictly monotone. (Contributed by Mario Carneiro, 15-Mar-2013)

Ref Expression
Assertion alephsmo Smo ℵ

Proof

Step Hyp Ref Expression
1 ssid On ⊆ On
2 ordon Ord On
3 alephord2i ( 𝑥 ∈ On → ( 𝑦𝑥 → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑥 ) ) )
4 3 ralrimiv ( 𝑥 ∈ On → ∀ 𝑦𝑥 ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑥 ) )
5 4 rgen 𝑥 ∈ On ∀ 𝑦𝑥 ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑥 )
6 alephfnon ℵ Fn On
7 alephsson ran ℵ ⊆ On
8 df-f ( ℵ : On ⟶ On ↔ ( ℵ Fn On ∧ ran ℵ ⊆ On ) )
9 6 7 8 mpbir2an ℵ : On ⟶ On
10 issmo2 ( ℵ : On ⟶ On → ( ( On ⊆ On ∧ Ord On ∧ ∀ 𝑥 ∈ On ∀ 𝑦𝑥 ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑥 ) ) → Smo ℵ ) )
11 9 10 ax-mp ( ( On ⊆ On ∧ Ord On ∧ ∀ 𝑥 ∈ On ∀ 𝑦𝑥 ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑥 ) ) → Smo ℵ )
12 1 2 5 11 mp3an Smo ℵ