Step |
Hyp |
Ref |
Expression |
1 |
|
alephordilem1 |
⊢ ( 𝐵 ∈ On → ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐵 ) ) |
2 |
|
domsdomtr |
⊢ ( ( 𝐴 ≼ ( ℵ ‘ 𝐵 ) ∧ ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐵 ) ) → 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) |
3 |
2
|
ex |
⊢ ( 𝐴 ≼ ( ℵ ‘ 𝐵 ) → ( ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐵 ) → 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) ) |
4 |
1 3
|
syl5com |
⊢ ( 𝐵 ∈ On → ( 𝐴 ≼ ( ℵ ‘ 𝐵 ) → 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) ) |
5 |
|
sdomdom |
⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → 𝐴 ≼ ( ℵ ‘ suc 𝐵 ) ) |
6 |
|
alephon |
⊢ ( ℵ ‘ suc 𝐵 ) ∈ On |
7 |
|
ondomen |
⊢ ( ( ( ℵ ‘ suc 𝐵 ) ∈ On ∧ 𝐴 ≼ ( ℵ ‘ suc 𝐵 ) ) → 𝐴 ∈ dom card ) |
8 |
6 7
|
mpan |
⊢ ( 𝐴 ≼ ( ℵ ‘ suc 𝐵 ) → 𝐴 ∈ dom card ) |
9 |
|
cardid2 |
⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) ≈ 𝐴 ) |
10 |
5 8 9
|
3syl |
⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → ( card ‘ 𝐴 ) ≈ 𝐴 ) |
11 |
10
|
ensymd |
⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → 𝐴 ≈ ( card ‘ 𝐴 ) ) |
12 |
|
alephnbtwn2 |
⊢ ¬ ( ( ℵ ‘ 𝐵 ) ≺ ( card ‘ 𝐴 ) ∧ ( card ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐵 ) ) |
13 |
12
|
imnani |
⊢ ( ( ℵ ‘ 𝐵 ) ≺ ( card ‘ 𝐴 ) → ¬ ( card ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐵 ) ) |
14 |
|
ensdomtr |
⊢ ( ( ( card ‘ 𝐴 ) ≈ 𝐴 ∧ 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) → ( card ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐵 ) ) |
15 |
10 14
|
mpancom |
⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → ( card ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐵 ) ) |
16 |
13 15
|
nsyl3 |
⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → ¬ ( ℵ ‘ 𝐵 ) ≺ ( card ‘ 𝐴 ) ) |
17 |
|
cardon |
⊢ ( card ‘ 𝐴 ) ∈ On |
18 |
|
alephon |
⊢ ( ℵ ‘ 𝐵 ) ∈ On |
19 |
|
domtriord |
⊢ ( ( ( card ‘ 𝐴 ) ∈ On ∧ ( ℵ ‘ 𝐵 ) ∈ On ) → ( ( card ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ↔ ¬ ( ℵ ‘ 𝐵 ) ≺ ( card ‘ 𝐴 ) ) ) |
20 |
17 18 19
|
mp2an |
⊢ ( ( card ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ↔ ¬ ( ℵ ‘ 𝐵 ) ≺ ( card ‘ 𝐴 ) ) |
21 |
16 20
|
sylibr |
⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → ( card ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) |
22 |
|
endomtr |
⊢ ( ( 𝐴 ≈ ( card ‘ 𝐴 ) ∧ ( card ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) → 𝐴 ≼ ( ℵ ‘ 𝐵 ) ) |
23 |
11 21 22
|
syl2anc |
⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → 𝐴 ≼ ( ℵ ‘ 𝐵 ) ) |
24 |
4 23
|
impbid1 |
⊢ ( 𝐵 ∈ On → ( 𝐴 ≼ ( ℵ ‘ 𝐵 ) ↔ 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) ) |