| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephordilem1 |
⊢ ( 𝐵 ∈ On → ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐵 ) ) |
| 2 |
|
domsdomtr |
⊢ ( ( 𝐴 ≼ ( ℵ ‘ 𝐵 ) ∧ ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐵 ) ) → 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) |
| 3 |
2
|
ex |
⊢ ( 𝐴 ≼ ( ℵ ‘ 𝐵 ) → ( ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐵 ) → 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) ) |
| 4 |
1 3
|
syl5com |
⊢ ( 𝐵 ∈ On → ( 𝐴 ≼ ( ℵ ‘ 𝐵 ) → 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) ) |
| 5 |
|
sdomdom |
⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → 𝐴 ≼ ( ℵ ‘ suc 𝐵 ) ) |
| 6 |
|
alephon |
⊢ ( ℵ ‘ suc 𝐵 ) ∈ On |
| 7 |
|
ondomen |
⊢ ( ( ( ℵ ‘ suc 𝐵 ) ∈ On ∧ 𝐴 ≼ ( ℵ ‘ suc 𝐵 ) ) → 𝐴 ∈ dom card ) |
| 8 |
6 7
|
mpan |
⊢ ( 𝐴 ≼ ( ℵ ‘ suc 𝐵 ) → 𝐴 ∈ dom card ) |
| 9 |
|
cardid2 |
⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) ≈ 𝐴 ) |
| 10 |
5 8 9
|
3syl |
⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → ( card ‘ 𝐴 ) ≈ 𝐴 ) |
| 11 |
10
|
ensymd |
⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → 𝐴 ≈ ( card ‘ 𝐴 ) ) |
| 12 |
|
alephnbtwn2 |
⊢ ¬ ( ( ℵ ‘ 𝐵 ) ≺ ( card ‘ 𝐴 ) ∧ ( card ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐵 ) ) |
| 13 |
12
|
imnani |
⊢ ( ( ℵ ‘ 𝐵 ) ≺ ( card ‘ 𝐴 ) → ¬ ( card ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐵 ) ) |
| 14 |
|
ensdomtr |
⊢ ( ( ( card ‘ 𝐴 ) ≈ 𝐴 ∧ 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) → ( card ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐵 ) ) |
| 15 |
10 14
|
mpancom |
⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → ( card ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐵 ) ) |
| 16 |
13 15
|
nsyl3 |
⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → ¬ ( ℵ ‘ 𝐵 ) ≺ ( card ‘ 𝐴 ) ) |
| 17 |
|
cardon |
⊢ ( card ‘ 𝐴 ) ∈ On |
| 18 |
|
alephon |
⊢ ( ℵ ‘ 𝐵 ) ∈ On |
| 19 |
|
domtriord |
⊢ ( ( ( card ‘ 𝐴 ) ∈ On ∧ ( ℵ ‘ 𝐵 ) ∈ On ) → ( ( card ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ↔ ¬ ( ℵ ‘ 𝐵 ) ≺ ( card ‘ 𝐴 ) ) ) |
| 20 |
17 18 19
|
mp2an |
⊢ ( ( card ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ↔ ¬ ( ℵ ‘ 𝐵 ) ≺ ( card ‘ 𝐴 ) ) |
| 21 |
16 20
|
sylibr |
⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → ( card ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) |
| 22 |
|
endomtr |
⊢ ( ( 𝐴 ≈ ( card ‘ 𝐴 ) ∧ ( card ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) → 𝐴 ≼ ( ℵ ‘ 𝐵 ) ) |
| 23 |
11 21 22
|
syl2anc |
⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → 𝐴 ≼ ( ℵ ‘ 𝐵 ) ) |
| 24 |
4 23
|
impbid1 |
⊢ ( 𝐵 ∈ On → ( 𝐴 ≼ ( ℵ ‘ 𝐵 ) ↔ 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) ) |