Metamath Proof Explorer


Theorem alephsucpw

Description: The power set of an aleph dominates the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 or gchaleph2 .) (Contributed by NM, 27-Aug-2005)

Ref Expression
Assertion alephsucpw ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 )

Proof

Step Hyp Ref Expression
1 alephsucpw2 ¬ 𝒫 ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 )
2 fvex ( ℵ ‘ suc 𝐴 ) ∈ V
3 fvex ( ℵ ‘ 𝐴 ) ∈ V
4 3 pwex 𝒫 ( ℵ ‘ 𝐴 ) ∈ V
5 domtri ( ( ( ℵ ‘ suc 𝐴 ) ∈ V ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ V ) → ( ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 ) ↔ ¬ 𝒫 ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) )
6 2 4 5 mp2an ( ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 ) ↔ ¬ 𝒫 ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) )
7 1 6 mpbir ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 )