Description: The power set of an aleph dominates the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 or gchaleph2 .) (Contributed by NM, 27-Aug-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephsucpw | ⊢ ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephsucpw2 | ⊢ ¬ 𝒫 ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) | |
| 2 | fvex | ⊢ ( ℵ ‘ suc 𝐴 ) ∈ V | |
| 3 | fvex | ⊢ ( ℵ ‘ 𝐴 ) ∈ V | |
| 4 | 3 | pwex | ⊢ 𝒫 ( ℵ ‘ 𝐴 ) ∈ V |
| 5 | domtri | ⊢ ( ( ( ℵ ‘ suc 𝐴 ) ∈ V ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ V ) → ( ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 ) ↔ ¬ 𝒫 ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) | |
| 6 | 2 4 5 | mp2an | ⊢ ( ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 ) ↔ ¬ 𝒫 ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
| 7 | 1 6 | mpbir | ⊢ ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 ) |