| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephordi |
⊢ ( 𝐴 ∈ On → ( 𝑦 ∈ 𝐴 → ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 2 |
1
|
ralrimiv |
⊢ ( 𝐴 ∈ On → ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝐴 ) ) |
| 3 |
|
alephon |
⊢ ( ℵ ‘ 𝐴 ) ∈ On |
| 4 |
2 3
|
jctil |
⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 5 |
|
breq2 |
⊢ ( 𝑥 = ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝑦 ) ≺ 𝑥 ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 6 |
5
|
ralbidv |
⊢ ( 𝑥 = ( ℵ ‘ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 7 |
6
|
elrab |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ↔ ( ( ℵ ‘ 𝐴 ) ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 8 |
4 7
|
sylibr |
⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) |
| 9 |
|
cardsdomelir |
⊢ ( 𝑧 ∈ ( card ‘ ( ℵ ‘ 𝐴 ) ) → 𝑧 ≺ ( ℵ ‘ 𝐴 ) ) |
| 10 |
|
alephcard |
⊢ ( card ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) |
| 11 |
10
|
eqcomi |
⊢ ( ℵ ‘ 𝐴 ) = ( card ‘ ( ℵ ‘ 𝐴 ) ) |
| 12 |
9 11
|
eleq2s |
⊢ ( 𝑧 ∈ ( ℵ ‘ 𝐴 ) → 𝑧 ≺ ( ℵ ‘ 𝐴 ) ) |
| 13 |
|
omex |
⊢ ω ∈ V |
| 14 |
|
vex |
⊢ 𝑧 ∈ V |
| 15 |
|
entri3 |
⊢ ( ( ω ∈ V ∧ 𝑧 ∈ V ) → ( ω ≼ 𝑧 ∨ 𝑧 ≼ ω ) ) |
| 16 |
13 14 15
|
mp2an |
⊢ ( ω ≼ 𝑧 ∨ 𝑧 ≼ ω ) |
| 17 |
|
carddom |
⊢ ( ( ω ∈ V ∧ 𝑧 ∈ V ) → ( ( card ‘ ω ) ⊆ ( card ‘ 𝑧 ) ↔ ω ≼ 𝑧 ) ) |
| 18 |
13 14 17
|
mp2an |
⊢ ( ( card ‘ ω ) ⊆ ( card ‘ 𝑧 ) ↔ ω ≼ 𝑧 ) |
| 19 |
|
cardom |
⊢ ( card ‘ ω ) = ω |
| 20 |
19
|
sseq1i |
⊢ ( ( card ‘ ω ) ⊆ ( card ‘ 𝑧 ) ↔ ω ⊆ ( card ‘ 𝑧 ) ) |
| 21 |
18 20
|
bitr3i |
⊢ ( ω ≼ 𝑧 ↔ ω ⊆ ( card ‘ 𝑧 ) ) |
| 22 |
|
cardidm |
⊢ ( card ‘ ( card ‘ 𝑧 ) ) = ( card ‘ 𝑧 ) |
| 23 |
|
cardalephex |
⊢ ( ω ⊆ ( card ‘ 𝑧 ) → ( ( card ‘ ( card ‘ 𝑧 ) ) = ( card ‘ 𝑧 ) ↔ ∃ 𝑥 ∈ On ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) ) ) |
| 24 |
22 23
|
mpbii |
⊢ ( ω ⊆ ( card ‘ 𝑧 ) → ∃ 𝑥 ∈ On ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) ) |
| 25 |
|
alephord |
⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑥 ∈ 𝐴 ↔ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 26 |
25
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑥 ∈ 𝐴 ↔ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 27 |
|
breq1 |
⊢ ( ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ( ( card ‘ 𝑧 ) ≺ ( ℵ ‘ 𝐴 ) ↔ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 28 |
14
|
cardid |
⊢ ( card ‘ 𝑧 ) ≈ 𝑧 |
| 29 |
|
sdomen1 |
⊢ ( ( card ‘ 𝑧 ) ≈ 𝑧 → ( ( card ‘ 𝑧 ) ≺ ( ℵ ‘ 𝐴 ) ↔ 𝑧 ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 30 |
28 29
|
ax-mp |
⊢ ( ( card ‘ 𝑧 ) ≺ ( ℵ ‘ 𝐴 ) ↔ 𝑧 ≺ ( ℵ ‘ 𝐴 ) ) |
| 31 |
27 30
|
bitr3di |
⊢ ( ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ( ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ 𝐴 ) ↔ 𝑧 ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 32 |
26 31
|
sylan9bb |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ℵ ‘ 𝑦 ) = ( ℵ ‘ 𝑥 ) ) |
| 34 |
33
|
breq1d |
⊢ ( 𝑦 = 𝑥 → ( ( ℵ ‘ 𝑦 ) ≺ 𝑧 ↔ ( ℵ ‘ 𝑥 ) ≺ 𝑧 ) ) |
| 35 |
34
|
rspcv |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 → ( ℵ ‘ 𝑥 ) ≺ 𝑧 ) ) |
| 36 |
|
sdomirr |
⊢ ¬ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑥 ) |
| 37 |
|
sdomen2 |
⊢ ( ( card ‘ 𝑧 ) ≈ 𝑧 → ( ( ℵ ‘ 𝑥 ) ≺ ( card ‘ 𝑧 ) ↔ ( ℵ ‘ 𝑥 ) ≺ 𝑧 ) ) |
| 38 |
28 37
|
ax-mp |
⊢ ( ( ℵ ‘ 𝑥 ) ≺ ( card ‘ 𝑧 ) ↔ ( ℵ ‘ 𝑥 ) ≺ 𝑧 ) |
| 39 |
|
breq2 |
⊢ ( ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ( ( ℵ ‘ 𝑥 ) ≺ ( card ‘ 𝑧 ) ↔ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑥 ) ) ) |
| 40 |
38 39
|
bitr3id |
⊢ ( ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ( ( ℵ ‘ 𝑥 ) ≺ 𝑧 ↔ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑥 ) ) ) |
| 41 |
36 40
|
mtbiri |
⊢ ( ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ¬ ( ℵ ‘ 𝑥 ) ≺ 𝑧 ) |
| 42 |
35 41
|
nsyli |
⊢ ( 𝑥 ∈ 𝐴 → ( ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 43 |
42
|
com12 |
⊢ ( ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ( 𝑥 ∈ 𝐴 → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 44 |
43
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝐴 → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 45 |
32 44
|
sylbird |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) ) → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 46 |
45
|
rexlimdva2 |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ On ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) ) |
| 47 |
24 46
|
syl5 |
⊢ ( 𝐴 ∈ On → ( ω ⊆ ( card ‘ 𝑧 ) → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) ) |
| 48 |
21 47
|
biimtrid |
⊢ ( 𝐴 ∈ On → ( ω ≼ 𝑧 → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ω ≼ 𝑧 → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) ) |
| 50 |
|
ne0i |
⊢ ( ∅ ∈ 𝐴 → 𝐴 ≠ ∅ ) |
| 51 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
| 52 |
|
alephgeom |
⊢ ( 𝑦 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝑦 ) ) |
| 53 |
|
alephon |
⊢ ( ℵ ‘ 𝑦 ) ∈ On |
| 54 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝑦 ) ∈ On → ( ω ⊆ ( ℵ ‘ 𝑦 ) → ω ≼ ( ℵ ‘ 𝑦 ) ) ) |
| 55 |
53 54
|
ax-mp |
⊢ ( ω ⊆ ( ℵ ‘ 𝑦 ) → ω ≼ ( ℵ ‘ 𝑦 ) ) |
| 56 |
52 55
|
sylbi |
⊢ ( 𝑦 ∈ On → ω ≼ ( ℵ ‘ 𝑦 ) ) |
| 57 |
|
domtr |
⊢ ( ( 𝑧 ≼ ω ∧ ω ≼ ( ℵ ‘ 𝑦 ) ) → 𝑧 ≼ ( ℵ ‘ 𝑦 ) ) |
| 58 |
56 57
|
sylan2 |
⊢ ( ( 𝑧 ≼ ω ∧ 𝑦 ∈ On ) → 𝑧 ≼ ( ℵ ‘ 𝑦 ) ) |
| 59 |
|
domnsym |
⊢ ( 𝑧 ≼ ( ℵ ‘ 𝑦 ) → ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) |
| 60 |
58 59
|
syl |
⊢ ( ( 𝑧 ≼ ω ∧ 𝑦 ∈ On ) → ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) |
| 61 |
51 60
|
sylan2 |
⊢ ( ( 𝑧 ≼ ω ∧ ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) ) → ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) |
| 62 |
61
|
expr |
⊢ ( ( 𝑧 ≼ ω ∧ 𝐴 ∈ On ) → ( 𝑦 ∈ 𝐴 → ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 63 |
62
|
ralrimiv |
⊢ ( ( 𝑧 ≼ ω ∧ 𝐴 ∈ On ) → ∀ 𝑦 ∈ 𝐴 ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) |
| 64 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) → ∃ 𝑦 ∈ 𝐴 ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) |
| 65 |
64
|
ex |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 → ∃ 𝑦 ∈ 𝐴 ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 66 |
50 63 65
|
syl2im |
⊢ ( ∅ ∈ 𝐴 → ( ( 𝑧 ≼ ω ∧ 𝐴 ∈ On ) → ∃ 𝑦 ∈ 𝐴 ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 67 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝐴 ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) |
| 68 |
66 67
|
imbitrdi |
⊢ ( ∅ ∈ 𝐴 → ( ( 𝑧 ≼ ω ∧ 𝐴 ∈ On ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 69 |
68
|
com12 |
⊢ ( ( 𝑧 ≼ ω ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐴 → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 70 |
69
|
expimpd |
⊢ ( 𝑧 ≼ ω → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 71 |
70
|
a1d |
⊢ ( 𝑧 ≼ ω → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) ) |
| 72 |
71
|
com3r |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ≼ ω → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) ) |
| 73 |
49 72
|
jaod |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ( ω ≼ 𝑧 ∨ 𝑧 ≼ ω ) → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) ) |
| 74 |
16 73
|
mpi |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 75 |
|
breq2 |
⊢ ( 𝑥 = 𝑧 → ( ( ℵ ‘ 𝑦 ) ≺ 𝑥 ↔ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 76 |
75
|
ralbidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 77 |
76
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ↔ ( 𝑧 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 78 |
77
|
simprbi |
⊢ ( 𝑧 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } → ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) |
| 79 |
78
|
con3i |
⊢ ( ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 → ¬ 𝑧 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) |
| 80 |
12 74 79
|
syl56 |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ ( ℵ ‘ 𝐴 ) → ¬ 𝑧 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) ) |
| 81 |
80
|
ralrimiv |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ¬ 𝑧 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) |
| 82 |
|
ssrab2 |
⊢ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ⊆ On |
| 83 |
|
oneqmini |
⊢ ( { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ⊆ On → ( ( ( ℵ ‘ 𝐴 ) ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ¬ 𝑧 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) → ( ℵ ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) ) |
| 84 |
82 83
|
ax-mp |
⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ¬ 𝑧 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) → ( ℵ ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) |
| 85 |
8 81 84
|
syl2an2r |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ℵ ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) |