Metamath Proof Explorer


Theorem alex

Description: Universal quantifier in terms of existential quantifier and negation. Dual of df-ex . See also the dual pair alnex / exnal . Theorem 19.6 of Margaris p. 89. (Contributed by NM, 12-Mar-1993)

Ref Expression
Assertion alex ( ∀ 𝑥 𝜑 ↔ ¬ ∃ 𝑥 ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 notnotb ( 𝜑 ↔ ¬ ¬ 𝜑 )
2 1 albii ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 ¬ ¬ 𝜑 )
3 alnex ( ∀ 𝑥 ¬ ¬ 𝜑 ↔ ¬ ∃ 𝑥 ¬ 𝜑 )
4 2 3 bitri ( ∀ 𝑥 𝜑 ↔ ¬ ∃ 𝑥 ¬ 𝜑 )