Description: Biconditional form of aleximi . (Contributed by BJ, 16-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | alexbii.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| Assertion | alexbii | ⊢ ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑥 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexbii.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | 1 | biimpd | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
| 3 | 2 | aleximi | ⊢ ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) ) |
| 4 | 1 | biimprd | ⊢ ( 𝜑 → ( 𝜒 → 𝜓 ) ) |
| 5 | 4 | aleximi | ⊢ ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 𝜒 → ∃ 𝑥 𝜓 ) ) |
| 6 | 3 5 | impbid | ⊢ ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑥 𝜒 ) ) |