Metamath Proof Explorer


Theorem alexbii

Description: Biconditional form of aleximi . (Contributed by BJ, 16-Nov-2020)

Ref Expression
Hypothesis alexbii.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion alexbii ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑥 𝜒 ) )

Proof

Step Hyp Ref Expression
1 alexbii.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 biimpd ( 𝜑 → ( 𝜓𝜒 ) )
3 2 aleximi ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) )
4 1 biimprd ( 𝜑 → ( 𝜒𝜓 ) )
5 4 aleximi ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 𝜒 → ∃ 𝑥 𝜓 ) )
6 3 5 impbid ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑥 𝜒 ) )