Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) |
2 |
1
|
anbi1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
3 |
2
|
exbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
4 |
1
|
imbi1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 = 𝑦 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
5 |
4
|
albidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
6 |
|
sbalex |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
7 |
3 5 6
|
vtoclbg |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
8 |
7
|
bicomd |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |