Metamath Proof Explorer


Theorem alexn

Description: A relationship between two quantifiers and negation. (Contributed by NM, 18-Aug-1993)

Ref Expression
Assertion alexn ( ∀ 𝑥𝑦 ¬ 𝜑 ↔ ¬ ∃ 𝑥𝑦 𝜑 )

Proof

Step Hyp Ref Expression
1 exnal ( ∃ 𝑦 ¬ 𝜑 ↔ ¬ ∀ 𝑦 𝜑 )
2 1 albii ( ∀ 𝑥𝑦 ¬ 𝜑 ↔ ∀ 𝑥 ¬ ∀ 𝑦 𝜑 )
3 alnex ( ∀ 𝑥 ¬ ∀ 𝑦 𝜑 ↔ ¬ ∃ 𝑥𝑦 𝜑 )
4 2 3 bitri ( ∀ 𝑥𝑦 ¬ 𝜑 ↔ ¬ ∃ 𝑥𝑦 𝜑 )