| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alexsub.1 | ⊢ ( 𝜑  →  𝑋  ∈  UFL ) | 
						
							| 2 |  | alexsub.2 | ⊢ ( 𝜑  →  𝑋  =  ∪  𝐵 ) | 
						
							| 3 |  | alexsub.3 | ⊢ ( 𝜑  →  𝐽  =  ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | 
						
							| 4 |  | alexsub.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  𝐵  ∧  𝑋  =  ∪  𝑥 ) )  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) | 
						
							| 5 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( UFil ‘ 𝑋 )  ∧  ( 𝐽  fLim  𝑓 )  =  ∅ ) )  →  𝑋  ∈  UFL ) | 
						
							| 6 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( UFil ‘ 𝑋 )  ∧  ( 𝐽  fLim  𝑓 )  =  ∅ ) )  →  𝑋  =  ∪  𝐵 ) | 
						
							| 7 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( UFil ‘ 𝑋 )  ∧  ( 𝐽  fLim  𝑓 )  =  ∅ ) )  →  𝐽  =  ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | 
						
							| 8 | 4 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( UFil ‘ 𝑋 )  ∧  ( 𝐽  fLim  𝑓 )  =  ∅ ) )  ∧  ( 𝑥  ⊆  𝐵  ∧  𝑋  =  ∪  𝑥 ) )  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) | 
						
							| 9 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( UFil ‘ 𝑋 )  ∧  ( 𝐽  fLim  𝑓 )  =  ∅ ) )  →  𝑓  ∈  ( UFil ‘ 𝑋 ) ) | 
						
							| 10 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( UFil ‘ 𝑋 )  ∧  ( 𝐽  fLim  𝑓 )  =  ∅ ) )  →  ( 𝐽  fLim  𝑓 )  =  ∅ ) | 
						
							| 11 | 5 6 7 8 9 10 | alexsublem | ⊢ ¬  ( 𝜑  ∧  ( 𝑓  ∈  ( UFil ‘ 𝑋 )  ∧  ( 𝐽  fLim  𝑓 )  =  ∅ ) ) | 
						
							| 12 | 11 | pm2.21i | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( UFil ‘ 𝑋 )  ∧  ( 𝐽  fLim  𝑓 )  =  ∅ ) )  →  ¬  ( 𝐽  fLim  𝑓 )  =  ∅ ) | 
						
							| 13 | 12 | expr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( UFil ‘ 𝑋 ) )  →  ( ( 𝐽  fLim  𝑓 )  =  ∅  →  ¬  ( 𝐽  fLim  𝑓 )  =  ∅ ) ) | 
						
							| 14 | 13 | pm2.01d | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( UFil ‘ 𝑋 ) )  →  ¬  ( 𝐽  fLim  𝑓 )  =  ∅ ) | 
						
							| 15 | 14 | neqned | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( UFil ‘ 𝑋 ) )  →  ( 𝐽  fLim  𝑓 )  ≠  ∅ ) | 
						
							| 16 | 15 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  ( UFil ‘ 𝑋 ) ( 𝐽  fLim  𝑓 )  ≠  ∅ ) | 
						
							| 17 |  | fibas | ⊢ ( fi ‘ 𝐵 )  ∈  TopBases | 
						
							| 18 |  | tgtopon | ⊢ ( ( fi ‘ 𝐵 )  ∈  TopBases  →  ( topGen ‘ ( fi ‘ 𝐵 ) )  ∈  ( TopOn ‘ ∪  ( fi ‘ 𝐵 ) ) ) | 
						
							| 19 | 17 18 | ax-mp | ⊢ ( topGen ‘ ( fi ‘ 𝐵 ) )  ∈  ( TopOn ‘ ∪  ( fi ‘ 𝐵 ) ) | 
						
							| 20 | 3 19 | eqeltrdi | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ ∪  ( fi ‘ 𝐵 ) ) ) | 
						
							| 21 | 1 | elexd | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 22 | 2 21 | eqeltrrd | ⊢ ( 𝜑  →  ∪  𝐵  ∈  V ) | 
						
							| 23 |  | uniexb | ⊢ ( 𝐵  ∈  V  ↔  ∪  𝐵  ∈  V ) | 
						
							| 24 | 22 23 | sylibr | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 25 |  | fiuni | ⊢ ( 𝐵  ∈  V  →  ∪  𝐵  =  ∪  ( fi ‘ 𝐵 ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝜑  →  ∪  𝐵  =  ∪  ( fi ‘ 𝐵 ) ) | 
						
							| 27 | 2 26 | eqtrd | ⊢ ( 𝜑  →  𝑋  =  ∪  ( fi ‘ 𝐵 ) ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( 𝜑  →  ( TopOn ‘ 𝑋 )  =  ( TopOn ‘ ∪  ( fi ‘ 𝐵 ) ) ) | 
						
							| 29 | 20 28 | eleqtrrd | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 30 |  | ufilcmp | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  →  ( 𝐽  ∈  Comp  ↔  ∀ 𝑓  ∈  ( UFil ‘ 𝑋 ) ( 𝐽  fLim  𝑓 )  ≠  ∅ ) ) | 
						
							| 31 | 1 29 30 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽  ∈  Comp  ↔  ∀ 𝑓  ∈  ( UFil ‘ 𝑋 ) ( 𝐽  fLim  𝑓 )  ≠  ∅ ) ) | 
						
							| 32 | 16 31 | mpbird | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) |