| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alexsubALT.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | alexsubALTlem1 | ⊢ ( 𝐽  ∈  Comp  →  ∃ 𝑥 ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 3 | 1 | alexsubALTlem4 | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ( ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  →  ∀ 𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 4 |  | velpw | ⊢ ( 𝑐  ∈  𝒫  𝐽  ↔  𝑐  ⊆  𝐽 ) | 
						
							| 5 |  | eleq2 | ⊢ ( 𝑋  =  ∪  𝑐  →  ( 𝑡  ∈  𝑋  ↔  𝑡  ∈  ∪  𝑐 ) ) | 
						
							| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( 𝑡  ∈  𝑋  ↔  𝑡  ∈  ∪  𝑐 ) ) | 
						
							| 7 |  | eluni | ⊢ ( 𝑡  ∈  ∪  𝑐  ↔  ∃ 𝑤 ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑐 ) ) | 
						
							| 8 |  | ssel | ⊢ ( 𝑐  ⊆  𝐽  →  ( 𝑤  ∈  𝑐  →  𝑤  ∈  𝐽 ) ) | 
						
							| 9 |  | eleq2 | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ( 𝑤  ∈  𝐽  ↔  𝑤  ∈  ( topGen ‘ ( fi ‘ 𝑥 ) ) ) ) | 
						
							| 10 |  | tg2 | ⊢ ( ( 𝑤  ∈  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑡  ∈  𝑤 )  →  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  𝑦  ⊆  𝑤 ) ) | 
						
							| 11 | 10 | ex | ⊢ ( 𝑤  ∈  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ( 𝑡  ∈  𝑤  →  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  𝑦  ⊆  𝑤 ) ) ) | 
						
							| 12 | 9 11 | biimtrdi | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ( 𝑤  ∈  𝐽  →  ( 𝑡  ∈  𝑤  →  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  𝑦  ⊆  𝑤 ) ) ) ) | 
						
							| 13 | 8 12 | sylan9r | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽 )  →  ( 𝑤  ∈  𝑐  →  ( 𝑡  ∈  𝑤  →  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  𝑦  ⊆  𝑤 ) ) ) ) | 
						
							| 14 | 13 | 3impia | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑤  ∈  𝑐 )  →  ( 𝑡  ∈  𝑤  →  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  𝑦  ⊆  𝑤 ) ) ) | 
						
							| 15 |  | sseq2 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑦  ⊆  𝑧  ↔  𝑦  ⊆  𝑤 ) ) | 
						
							| 16 | 15 | rspcev | ⊢ ( ( 𝑤  ∈  𝑐  ∧  𝑦  ⊆  𝑤 )  →  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝑤  ∈  𝑐  →  ( 𝑦  ⊆  𝑤  →  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 ) ) | 
						
							| 18 | 17 | 3ad2ant3 | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑤  ∈  𝑐 )  →  ( 𝑦  ⊆  𝑤  →  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 ) ) | 
						
							| 19 | 18 | anim2d | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑤  ∈  𝑐 )  →  ( ( 𝑡  ∈  𝑦  ∧  𝑦  ⊆  𝑤 )  →  ( 𝑡  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 ) ) ) | 
						
							| 20 | 19 | reximdv | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑤  ∈  𝑐 )  →  ( ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  𝑦  ⊆  𝑤 )  →  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 ) ) ) | 
						
							| 21 | 14 20 | syld | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑤  ∈  𝑐 )  →  ( 𝑡  ∈  𝑤  →  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 ) ) ) | 
						
							| 22 | 21 | 3expia | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽 )  →  ( 𝑤  ∈  𝑐  →  ( 𝑡  ∈  𝑤  →  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 ) ) ) ) | 
						
							| 23 | 22 | com23 | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽 )  →  ( 𝑡  ∈  𝑤  →  ( 𝑤  ∈  𝑐  →  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 ) ) ) ) | 
						
							| 24 | 23 | impd | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽 )  →  ( ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑐 )  →  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 ) ) ) | 
						
							| 25 | 24 | exlimdv | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽 )  →  ( ∃ 𝑤 ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑐 )  →  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 ) ) ) | 
						
							| 26 | 7 25 | biimtrid | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽 )  →  ( 𝑡  ∈  ∪  𝑐  →  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 ) ) ) | 
						
							| 27 | 26 | 3adant3 | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( 𝑡  ∈  ∪  𝑐  →  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 ) ) ) | 
						
							| 28 | 6 27 | sylbid | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( 𝑡  ∈  𝑋  →  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 ) ) ) | 
						
							| 29 |  | ssel | ⊢ ( 𝑦  ⊆  𝑧  →  ( 𝑡  ∈  𝑦  →  𝑡  ∈  𝑧 ) ) | 
						
							| 30 |  | elunii | ⊢ ( ( 𝑡  ∈  𝑧  ∧  𝑧  ∈  𝑐 )  →  𝑡  ∈  ∪  𝑐 ) | 
						
							| 31 | 30 | expcom | ⊢ ( 𝑧  ∈  𝑐  →  ( 𝑡  ∈  𝑧  →  𝑡  ∈  ∪  𝑐 ) ) | 
						
							| 32 | 6 | biimprd | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( 𝑡  ∈  ∪  𝑐  →  𝑡  ∈  𝑋 ) ) | 
						
							| 33 | 31 32 | sylan9r | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑧  ∈  𝑐 )  →  ( 𝑡  ∈  𝑧  →  𝑡  ∈  𝑋 ) ) | 
						
							| 34 | 29 33 | syl9r | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑧  ∈  𝑐 )  →  ( 𝑦  ⊆  𝑧  →  ( 𝑡  ∈  𝑦  →  𝑡  ∈  𝑋 ) ) ) | 
						
							| 35 | 34 | rexlimdva | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧  →  ( 𝑡  ∈  𝑦  →  𝑡  ∈  𝑋 ) ) ) | 
						
							| 36 | 35 | com23 | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( 𝑡  ∈  𝑦  →  ( ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧  →  𝑡  ∈  𝑋 ) ) ) | 
						
							| 37 | 36 | impd | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( ( 𝑡  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 )  →  𝑡  ∈  𝑋 ) ) | 
						
							| 38 | 37 | rexlimdvw | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 )  →  𝑡  ∈  𝑋 ) ) | 
						
							| 39 | 28 38 | impbid | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( 𝑡  ∈  𝑋  ↔  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 ) ) ) | 
						
							| 40 |  | elunirab | ⊢ ( 𝑡  ∈  ∪  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ↔  ∃ 𝑦  ∈  ( fi ‘ 𝑥 ) ( 𝑡  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 ) ) | 
						
							| 41 | 39 40 | bitr4di | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( 𝑡  ∈  𝑋  ↔  𝑡  ∈  ∪  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 } ) ) | 
						
							| 42 | 41 | eqrdv | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  𝑋  =  ∪  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 } ) | 
						
							| 43 |  | ssrab2 | ⊢ { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ⊆  ( fi ‘ 𝑥 ) | 
						
							| 44 |  | fvex | ⊢ ( fi ‘ 𝑥 )  ∈  V | 
						
							| 45 | 44 | elpw2 | ⊢ ( { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ∈  𝒫  ( fi ‘ 𝑥 )  ↔  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ⊆  ( fi ‘ 𝑥 ) ) | 
						
							| 46 | 43 45 | mpbir | ⊢ { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ∈  𝒫  ( fi ‘ 𝑥 ) | 
						
							| 47 |  | unieq | ⊢ ( 𝑎  =  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ∪  𝑎  =  ∪  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 } ) | 
						
							| 48 | 47 | eqeq2d | ⊢ ( 𝑎  =  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ( 𝑋  =  ∪  𝑎  ↔  𝑋  =  ∪  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 } ) ) | 
						
							| 49 |  | pweq | ⊢ ( 𝑎  =  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  𝒫  𝑎  =  𝒫  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 } ) | 
						
							| 50 | 49 | ineq1d | ⊢ ( 𝑎  =  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ( 𝒫  𝑎  ∩  Fin )  =  ( 𝒫  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ∩  Fin ) ) | 
						
							| 51 | 50 | rexeqdv | ⊢ ( 𝑎  =  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ( ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏  ↔  ∃ 𝑏  ∈  ( 𝒫  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) | 
						
							| 52 | 48 51 | imbi12d | ⊢ ( 𝑎  =  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ( ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 )  ↔  ( 𝑋  =  ∪  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ∃ 𝑏  ∈  ( 𝒫  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 53 | 52 | rspcv | ⊢ ( { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ∈  𝒫  ( fi ‘ 𝑥 )  →  ( ∀ 𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 )  →  ( 𝑋  =  ∪  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ∃ 𝑏  ∈  ( 𝒫  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 54 | 46 53 | ax-mp | ⊢ ( ∀ 𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 )  →  ( 𝑋  =  ∪  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ∃ 𝑏  ∈  ( 𝒫  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) | 
						
							| 55 | 42 54 | syl5com | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( ∀ 𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 )  →  ∃ 𝑏  ∈  ( 𝒫  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) | 
						
							| 56 |  | elfpw | ⊢ ( 𝑏  ∈  ( 𝒫  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ∩  Fin )  ↔  ( 𝑏  ⊆  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ∧  𝑏  ∈  Fin ) ) | 
						
							| 57 |  | ssel | ⊢ ( 𝑏  ⊆  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ( 𝑡  ∈  𝑏  →  𝑡  ∈  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 } ) ) | 
						
							| 58 |  | sseq1 | ⊢ ( 𝑦  =  𝑡  →  ( 𝑦  ⊆  𝑧  ↔  𝑡  ⊆  𝑧 ) ) | 
						
							| 59 | 58 | rexbidv | ⊢ ( 𝑦  =  𝑡  →  ( ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧  ↔  ∃ 𝑧  ∈  𝑐 𝑡  ⊆  𝑧 ) ) | 
						
							| 60 | 59 | elrab | ⊢ ( 𝑡  ∈  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ↔  ( 𝑡  ∈  ( fi ‘ 𝑥 )  ∧  ∃ 𝑧  ∈  𝑐 𝑡  ⊆  𝑧 ) ) | 
						
							| 61 | 60 | simprbi | ⊢ ( 𝑡  ∈  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ∃ 𝑧  ∈  𝑐 𝑡  ⊆  𝑧 ) | 
						
							| 62 | 57 61 | syl6 | ⊢ ( 𝑏  ⊆  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ( 𝑡  ∈  𝑏  →  ∃ 𝑧  ∈  𝑐 𝑡  ⊆  𝑧 ) ) | 
						
							| 63 | 62 | ralrimiv | ⊢ ( 𝑏  ⊆  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ∀ 𝑡  ∈  𝑏 ∃ 𝑧  ∈  𝑐 𝑡  ⊆  𝑧 ) | 
						
							| 64 |  | sseq2 | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑡 )  →  ( 𝑡  ⊆  𝑧  ↔  𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) ) ) | 
						
							| 65 | 64 | ac6sfi | ⊢ ( ( 𝑏  ∈  Fin  ∧  ∀ 𝑡  ∈  𝑏 ∃ 𝑧  ∈  𝑐 𝑡  ⊆  𝑧 )  →  ∃ 𝑓 ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) ) ) | 
						
							| 66 | 65 | ex | ⊢ ( 𝑏  ∈  Fin  →  ( ∀ 𝑡  ∈  𝑏 ∃ 𝑧  ∈  𝑐 𝑡  ⊆  𝑧  →  ∃ 𝑓 ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) ) ) ) | 
						
							| 67 | 63 66 | syl5 | ⊢ ( 𝑏  ∈  Fin  →  ( 𝑏  ⊆  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ∃ 𝑓 ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) ) ) ) | 
						
							| 68 | 67 | adantl | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  →  ( 𝑏  ⊆  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ∃ 𝑓 ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) ) ) ) | 
						
							| 69 |  | simprll | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  𝑓 : 𝑏 ⟶ 𝑐 ) | 
						
							| 70 |  | frn | ⊢ ( 𝑓 : 𝑏 ⟶ 𝑐  →  ran  𝑓  ⊆  𝑐 ) | 
						
							| 71 | 69 70 | syl | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  ran  𝑓  ⊆  𝑐 ) | 
						
							| 72 |  | simplr | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  𝑏  ∈  Fin ) | 
						
							| 73 |  | ffn | ⊢ ( 𝑓 : 𝑏 ⟶ 𝑐  →  𝑓  Fn  𝑏 ) | 
						
							| 74 |  | dffn4 | ⊢ ( 𝑓  Fn  𝑏  ↔  𝑓 : 𝑏 –onto→ ran  𝑓 ) | 
						
							| 75 | 73 74 | sylib | ⊢ ( 𝑓 : 𝑏 ⟶ 𝑐  →  𝑓 : 𝑏 –onto→ ran  𝑓 ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  →  𝑓 : 𝑏 –onto→ ran  𝑓 ) | 
						
							| 77 | 76 | ad2antrl | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  𝑓 : 𝑏 –onto→ ran  𝑓 ) | 
						
							| 78 |  | fodomfi | ⊢ ( ( 𝑏  ∈  Fin  ∧  𝑓 : 𝑏 –onto→ ran  𝑓 )  →  ran  𝑓  ≼  𝑏 ) | 
						
							| 79 | 72 77 78 | syl2anc | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  ran  𝑓  ≼  𝑏 ) | 
						
							| 80 |  | domfi | ⊢ ( ( 𝑏  ∈  Fin  ∧  ran  𝑓  ≼  𝑏 )  →  ran  𝑓  ∈  Fin ) | 
						
							| 81 | 72 79 80 | syl2anc | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  ran  𝑓  ∈  Fin ) | 
						
							| 82 | 71 81 | jca | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  ( ran  𝑓  ⊆  𝑐  ∧  ran  𝑓  ∈  Fin ) ) | 
						
							| 83 |  | elin | ⊢ ( ran  𝑓  ∈  ( 𝒫  𝑐  ∩  Fin )  ↔  ( ran  𝑓  ∈  𝒫  𝑐  ∧  ran  𝑓  ∈  Fin ) ) | 
						
							| 84 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 85 | 84 | elpw2 | ⊢ ( ran  𝑓  ∈  𝒫  𝑐  ↔  ran  𝑓  ⊆  𝑐 ) | 
						
							| 86 | 85 | anbi1i | ⊢ ( ( ran  𝑓  ∈  𝒫  𝑐  ∧  ran  𝑓  ∈  Fin )  ↔  ( ran  𝑓  ⊆  𝑐  ∧  ran  𝑓  ∈  Fin ) ) | 
						
							| 87 | 83 86 | bitr2i | ⊢ ( ( ran  𝑓  ⊆  𝑐  ∧  ran  𝑓  ∈  Fin )  ↔  ran  𝑓  ∈  ( 𝒫  𝑐  ∩  Fin ) ) | 
						
							| 88 | 82 87 | sylib | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  ran  𝑓  ∈  ( 𝒫  𝑐  ∩  Fin ) ) | 
						
							| 89 |  | simprr | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  𝑋  =  ∪  𝑏 ) | 
						
							| 90 |  | uniiun | ⊢ ∪  𝑏  =  ∪  𝑡  ∈  𝑏 𝑡 | 
						
							| 91 |  | simprlr | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) ) | 
						
							| 92 |  | ss2iun | ⊢ ( ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 )  →  ∪  𝑡  ∈  𝑏 𝑡  ⊆  ∪  𝑡  ∈  𝑏 ( 𝑓 ‘ 𝑡 ) ) | 
						
							| 93 | 91 92 | syl | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  ∪  𝑡  ∈  𝑏 𝑡  ⊆  ∪  𝑡  ∈  𝑏 ( 𝑓 ‘ 𝑡 ) ) | 
						
							| 94 | 90 93 | eqsstrid | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  ∪  𝑏  ⊆  ∪  𝑡  ∈  𝑏 ( 𝑓 ‘ 𝑡 ) ) | 
						
							| 95 |  | fniunfv | ⊢ ( 𝑓  Fn  𝑏  →  ∪  𝑡  ∈  𝑏 ( 𝑓 ‘ 𝑡 )  =  ∪  ran  𝑓 ) | 
						
							| 96 | 69 73 95 | 3syl | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  ∪  𝑡  ∈  𝑏 ( 𝑓 ‘ 𝑡 )  =  ∪  ran  𝑓 ) | 
						
							| 97 | 94 96 | sseqtrd | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  ∪  𝑏  ⊆  ∪  ran  𝑓 ) | 
						
							| 98 | 89 97 | eqsstrd | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  𝑋  ⊆  ∪  ran  𝑓 ) | 
						
							| 99 |  | simpll2 | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  𝑐  ⊆  𝐽 ) | 
						
							| 100 | 71 99 | sstrd | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  ran  𝑓  ⊆  𝐽 ) | 
						
							| 101 |  | uniss | ⊢ ( ran  𝑓  ⊆  𝐽  →  ∪  ran  𝑓  ⊆  ∪  𝐽 ) | 
						
							| 102 | 101 1 | sseqtrrdi | ⊢ ( ran  𝑓  ⊆  𝐽  →  ∪  ran  𝑓  ⊆  𝑋 ) | 
						
							| 103 | 100 102 | syl | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  ∪  ran  𝑓  ⊆  𝑋 ) | 
						
							| 104 | 98 103 | eqssd | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  𝑋  =  ∪  ran  𝑓 ) | 
						
							| 105 |  | unieq | ⊢ ( 𝑑  =  ran  𝑓  →  ∪  𝑑  =  ∪  ran  𝑓 ) | 
						
							| 106 | 105 | eqeq2d | ⊢ ( 𝑑  =  ran  𝑓  →  ( 𝑋  =  ∪  𝑑  ↔  𝑋  =  ∪  ran  𝑓 ) ) | 
						
							| 107 | 106 | rspcev | ⊢ ( ( ran  𝑓  ∈  ( 𝒫  𝑐  ∩  Fin )  ∧  𝑋  =  ∪  ran  𝑓 )  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) | 
						
							| 108 | 88 104 107 | syl2anc | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  ∧  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  ∧  𝑋  =  ∪  𝑏 ) )  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) | 
						
							| 109 | 108 | exp32 | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  →  ( ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  →  ( 𝑋  =  ∪  𝑏  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 110 | 109 | exlimdv | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  →  ( ∃ 𝑓 ( 𝑓 : 𝑏 ⟶ 𝑐  ∧  ∀ 𝑡  ∈  𝑏 𝑡  ⊆  ( 𝑓 ‘ 𝑡 ) )  →  ( 𝑋  =  ∪  𝑏  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 111 | 68 110 | syld | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  ∧  𝑏  ∈  Fin )  →  ( 𝑏  ⊆  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ( 𝑋  =  ∪  𝑏  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 112 | 111 | ex | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( 𝑏  ∈  Fin  →  ( 𝑏  ⊆  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ( 𝑋  =  ∪  𝑏  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) ) | 
						
							| 113 | 112 | com23 | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( 𝑏  ⊆  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  →  ( 𝑏  ∈  Fin  →  ( 𝑋  =  ∪  𝑏  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) ) | 
						
							| 114 | 113 | impd | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( ( 𝑏  ⊆  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ∧  𝑏  ∈  Fin )  →  ( 𝑋  =  ∪  𝑏  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 115 | 56 114 | biimtrid | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( 𝑏  ∈  ( 𝒫  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ∩  Fin )  →  ( 𝑋  =  ∪  𝑏  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 116 | 115 | rexlimdv | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( ∃ 𝑏  ∈  ( 𝒫  { 𝑦  ∈  ( fi ‘ 𝑥 )  ∣  ∃ 𝑧  ∈  𝑐 𝑦  ⊆  𝑧 }  ∩  Fin ) 𝑋  =  ∪  𝑏  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) | 
						
							| 117 | 55 116 | syld | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ( ∀ 𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 )  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) | 
						
							| 118 | 117 | 3exp | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ( 𝑐  ⊆  𝐽  →  ( 𝑋  =  ∪  𝑐  →  ( ∀ 𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 )  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) ) | 
						
							| 119 | 118 | com34 | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ( 𝑐  ⊆  𝐽  →  ( ∀ 𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 )  →  ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) ) | 
						
							| 120 | 119 | com23 | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ( ∀ 𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 )  →  ( 𝑐  ⊆  𝐽  →  ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) ) | 
						
							| 121 | 4 120 | syl7bi | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ( ∀ 𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 )  →  ( 𝑐  ∈  𝒫  𝐽  →  ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) ) | 
						
							| 122 | 121 | ralrimdv | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ( ∀ 𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 )  →  ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 123 |  | fibas | ⊢ ( fi ‘ 𝑥 )  ∈  TopBases | 
						
							| 124 |  | tgcl | ⊢ ( ( fi ‘ 𝑥 )  ∈  TopBases  →  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∈  Top ) | 
						
							| 125 | 123 124 | ax-mp | ⊢ ( topGen ‘ ( fi ‘ 𝑥 ) )  ∈  Top | 
						
							| 126 |  | eleq1 | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ( 𝐽  ∈  Top  ↔  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∈  Top ) ) | 
						
							| 127 | 125 126 | mpbiri | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  𝐽  ∈  Top ) | 
						
							| 128 | 122 127 | jctild | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ( ∀ 𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 )  →  ( 𝐽  ∈  Top  ∧  ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) ) | 
						
							| 129 | 1 | iscmp | ⊢ ( 𝐽  ∈  Comp  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 130 | 128 129 | imbitrrdi | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ( ∀ 𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 )  →  𝐽  ∈  Comp ) ) | 
						
							| 131 | 3 130 | syld | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ( ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  →  𝐽  ∈  Comp ) ) | 
						
							| 132 | 131 | imp | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) )  →  𝐽  ∈  Comp ) | 
						
							| 133 | 132 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) )  →  𝐽  ∈  Comp ) | 
						
							| 134 | 2 133 | impbii | ⊢ ( 𝐽  ∈  Comp  ↔  ∃ 𝑥 ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) |