| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alexsubALT.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | cmptop | ⊢ ( 𝐽  ∈  Comp  →  𝐽  ∈  Top ) | 
						
							| 3 |  | fitop | ⊢ ( 𝐽  ∈  Top  →  ( fi ‘ 𝐽 )  =  𝐽 ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( 𝐽  ∈  Top  →  ( topGen ‘ ( fi ‘ 𝐽 ) )  =  ( topGen ‘ 𝐽 ) ) | 
						
							| 5 |  | tgtop | ⊢ ( 𝐽  ∈  Top  →  ( topGen ‘ 𝐽 )  =  𝐽 ) | 
						
							| 6 | 4 5 | eqtr2d | ⊢ ( 𝐽  ∈  Top  →  𝐽  =  ( topGen ‘ ( fi ‘ 𝐽 ) ) ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝐽  ∈  Comp  →  𝐽  =  ( topGen ‘ ( fi ‘ 𝐽 ) ) ) | 
						
							| 8 |  | velpw | ⊢ ( 𝑐  ∈  𝒫  𝐽  ↔  𝑐  ⊆  𝐽 ) | 
						
							| 9 | 1 | cmpcov | ⊢ ( ( 𝐽  ∈  Comp  ∧  𝑐  ⊆  𝐽  ∧  𝑋  =  ∪  𝑐 )  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) | 
						
							| 10 | 9 | 3exp | ⊢ ( 𝐽  ∈  Comp  →  ( 𝑐  ⊆  𝐽  →  ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 11 | 8 10 | biimtrid | ⊢ ( 𝐽  ∈  Comp  →  ( 𝑐  ∈  𝒫  𝐽  →  ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 12 | 11 | ralrimiv | ⊢ ( 𝐽  ∈  Comp  →  ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) | 
						
							| 13 |  | 2fveq3 | ⊢ ( 𝑥  =  𝐽  →  ( topGen ‘ ( fi ‘ 𝑥 ) )  =  ( topGen ‘ ( fi ‘ 𝐽 ) ) ) | 
						
							| 14 | 13 | eqeq2d | ⊢ ( 𝑥  =  𝐽  →  ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ↔  𝐽  =  ( topGen ‘ ( fi ‘ 𝐽 ) ) ) ) | 
						
							| 15 |  | pweq | ⊢ ( 𝑥  =  𝐽  →  𝒫  𝑥  =  𝒫  𝐽 ) | 
						
							| 16 | 15 | raleqdv | ⊢ ( 𝑥  =  𝐽  →  ( ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ↔  ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 17 | 14 16 | anbi12d | ⊢ ( 𝑥  =  𝐽  →  ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) )  ↔  ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝐽 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) ) | 
						
							| 18 | 17 | spcegv | ⊢ ( 𝐽  ∈  Comp  →  ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝐽 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝐽 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) )  →  ∃ 𝑥 ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) ) | 
						
							| 19 | 7 12 18 | mp2and | ⊢ ( 𝐽  ∈  Comp  →  ∃ 𝑥 ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) |