| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alexsubALT.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | ralnex | ⊢ ( ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏  ↔  ¬  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) | 
						
							| 3 | 1 | alexsubALTlem2 | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  →  ∃ 𝑢  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ∀ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ¬  𝑢  ⊊  𝑣 ) | 
						
							| 4 |  | elun | ⊢ ( 𝑢  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } )  ↔  ( 𝑢  ∈  { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∨  𝑢  ∈  { ∅ } ) ) | 
						
							| 5 |  | sseq2 | ⊢ ( 𝑧  =  𝑢  →  ( 𝑎  ⊆  𝑧  ↔  𝑎  ⊆  𝑢 ) ) | 
						
							| 6 |  | pweq | ⊢ ( 𝑧  =  𝑢  →  𝒫  𝑧  =  𝒫  𝑢 ) | 
						
							| 7 | 6 | ineq1d | ⊢ ( 𝑧  =  𝑢  →  ( 𝒫  𝑧  ∩  Fin )  =  ( 𝒫  𝑢  ∩  Fin ) ) | 
						
							| 8 | 7 | raleqdv | ⊢ ( 𝑧  =  𝑢  →  ( ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏  ↔  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) | 
						
							| 9 | 5 8 | anbi12d | ⊢ ( 𝑧  =  𝑢  →  ( ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  ↔  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 10 | 9 | elrab | ⊢ ( 𝑢  ∈  { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ↔  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 11 |  | velsn | ⊢ ( 𝑢  ∈  { ∅ }  ↔  𝑢  =  ∅ ) | 
						
							| 12 | 10 11 | orbi12i | ⊢ ( ( 𝑢  ∈  { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∨  𝑢  ∈  { ∅ } )  ↔  ( ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) )  ∨  𝑢  =  ∅ ) ) | 
						
							| 13 | 4 12 | bitri | ⊢ ( 𝑢  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } )  ↔  ( ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) )  ∨  𝑢  =  ∅ ) ) | 
						
							| 14 |  | ralnex | ⊢ ( ∀ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ¬  𝑢  ⊊  𝑣  ↔  ¬  ∃ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) 𝑢  ⊊  𝑣 ) | 
						
							| 15 |  | simprrl | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  𝑎  ⊆  𝑢 ) | 
						
							| 16 | 15 | unissd | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ∪  𝑎  ⊆  ∪  𝑢 ) | 
						
							| 17 |  | sseq1 | ⊢ ( 𝑋  =  ∪  𝑎  →  ( 𝑋  ⊆  ∪  𝑢  ↔  ∪  𝑎  ⊆  ∪  𝑢 ) ) | 
						
							| 18 | 16 17 | syl5ibrcom | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ( 𝑋  =  ∪  𝑎  →  𝑋  ⊆  ∪  𝑢 ) ) | 
						
							| 19 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 20 |  | inss1 | ⊢ ( 𝑥  ∩  𝑢 )  ⊆  𝑥 | 
						
							| 21 | 19 20 | elpwi2 | ⊢ ( 𝑥  ∩  𝑢 )  ∈  𝒫  𝑥 | 
						
							| 22 |  | unieq | ⊢ ( 𝑐  =  ( 𝑥  ∩  𝑢 )  →  ∪  𝑐  =  ∪  ( 𝑥  ∩  𝑢 ) ) | 
						
							| 23 | 22 | eqeq2d | ⊢ ( 𝑐  =  ( 𝑥  ∩  𝑢 )  →  ( 𝑋  =  ∪  𝑐  ↔  𝑋  =  ∪  ( 𝑥  ∩  𝑢 ) ) ) | 
						
							| 24 |  | pweq | ⊢ ( 𝑐  =  ( 𝑥  ∩  𝑢 )  →  𝒫  𝑐  =  𝒫  ( 𝑥  ∩  𝑢 ) ) | 
						
							| 25 | 24 | ineq1d | ⊢ ( 𝑐  =  ( 𝑥  ∩  𝑢 )  →  ( 𝒫  𝑐  ∩  Fin )  =  ( 𝒫  ( 𝑥  ∩  𝑢 )  ∩  Fin ) ) | 
						
							| 26 | 25 | rexeqdv | ⊢ ( 𝑐  =  ( 𝑥  ∩  𝑢 )  →  ( ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑  ↔  ∃ 𝑑  ∈  ( 𝒫  ( 𝑥  ∩  𝑢 )  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) | 
						
							| 27 | 23 26 | imbi12d | ⊢ ( 𝑐  =  ( 𝑥  ∩  𝑢 )  →  ( ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ↔  ( 𝑋  =  ∪  ( 𝑥  ∩  𝑢 )  →  ∃ 𝑑  ∈  ( 𝒫  ( 𝑥  ∩  𝑢 )  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 28 | 27 | rspccv | ⊢ ( ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  →  ( ( 𝑥  ∩  𝑢 )  ∈  𝒫  𝑥  →  ( 𝑋  =  ∪  ( 𝑥  ∩  𝑢 )  →  ∃ 𝑑  ∈  ( 𝒫  ( 𝑥  ∩  𝑢 )  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) ) | 
						
							| 29 | 21 28 | mpi | ⊢ ( ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  →  ( 𝑋  =  ∪  ( 𝑥  ∩  𝑢 )  →  ∃ 𝑑  ∈  ( 𝒫  ( 𝑥  ∩  𝑢 )  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) | 
						
							| 30 |  | inss2 | ⊢ ( 𝑥  ∩  𝑢 )  ⊆  𝑢 | 
						
							| 31 |  | sstr | ⊢ ( ( 𝑑  ⊆  ( 𝑥  ∩  𝑢 )  ∧  ( 𝑥  ∩  𝑢 )  ⊆  𝑢 )  →  𝑑  ⊆  𝑢 ) | 
						
							| 32 | 30 31 | mpan2 | ⊢ ( 𝑑  ⊆  ( 𝑥  ∩  𝑢 )  →  𝑑  ⊆  𝑢 ) | 
						
							| 33 | 32 | anim1i | ⊢ ( ( 𝑑  ⊆  ( 𝑥  ∩  𝑢 )  ∧  𝑑  ∈  Fin )  →  ( 𝑑  ⊆  𝑢  ∧  𝑑  ∈  Fin ) ) | 
						
							| 34 |  | elfpw | ⊢ ( 𝑑  ∈  ( 𝒫  ( 𝑥  ∩  𝑢 )  ∩  Fin )  ↔  ( 𝑑  ⊆  ( 𝑥  ∩  𝑢 )  ∧  𝑑  ∈  Fin ) ) | 
						
							| 35 |  | elfpw | ⊢ ( 𝑑  ∈  ( 𝒫  𝑢  ∩  Fin )  ↔  ( 𝑑  ⊆  𝑢  ∧  𝑑  ∈  Fin ) ) | 
						
							| 36 | 33 34 35 | 3imtr4i | ⊢ ( 𝑑  ∈  ( 𝒫  ( 𝑥  ∩  𝑢 )  ∩  Fin )  →  𝑑  ∈  ( 𝒫  𝑢  ∩  Fin ) ) | 
						
							| 37 | 36 | anim1i | ⊢ ( ( 𝑑  ∈  ( 𝒫  ( 𝑥  ∩  𝑢 )  ∩  Fin )  ∧  𝑋  =  ∪  𝑑 )  →  ( 𝑑  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  𝑋  =  ∪  𝑑 ) ) | 
						
							| 38 | 37 | reximi2 | ⊢ ( ∃ 𝑑  ∈  ( 𝒫  ( 𝑥  ∩  𝑢 )  ∩  Fin ) 𝑋  =  ∪  𝑑  →  ∃ 𝑑  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑑 ) | 
						
							| 39 | 29 38 | syl6 | ⊢ ( ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  →  ( 𝑋  =  ∪  ( 𝑥  ∩  𝑢 )  →  ∃ 𝑑  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑑 ) ) | 
						
							| 40 |  | unieq | ⊢ ( 𝑑  =  𝑏  →  ∪  𝑑  =  ∪  𝑏 ) | 
						
							| 41 | 40 | eqeq2d | ⊢ ( 𝑑  =  𝑏  →  ( 𝑋  =  ∪  𝑑  ↔  𝑋  =  ∪  𝑏 ) ) | 
						
							| 42 | 41 | cbvrexvw | ⊢ ( ∃ 𝑑  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑑  ↔  ∃ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑏 ) | 
						
							| 43 | 39 42 | imbitrdi | ⊢ ( ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  →  ( 𝑋  =  ∪  ( 𝑥  ∩  𝑢 )  →  ∃ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) | 
						
							| 44 |  | dfrex2 | ⊢ ( ∃ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑏  ↔  ¬  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) | 
						
							| 45 | 43 44 | imbitrdi | ⊢ ( ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  →  ( 𝑋  =  ∪  ( 𝑥  ∩  𝑢 )  →  ¬  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) | 
						
							| 46 | 45 | con2d | ⊢ ( ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  →  ( ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏  →  ¬  𝑋  =  ∪  ( 𝑥  ∩  𝑢 ) ) ) | 
						
							| 47 | 46 | a1d | ⊢ ( ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  →  ( 𝑎  ⊆  𝑢  →  ( ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏  →  ¬  𝑋  =  ∪  ( 𝑥  ∩  𝑢 ) ) ) ) | 
						
							| 48 | 47 | 3ad2ant2 | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  →  ( 𝑎  ⊆  𝑢  →  ( ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏  →  ¬  𝑋  =  ∪  ( 𝑥  ∩  𝑢 ) ) ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  𝑢  ∈  𝒫  ( fi ‘ 𝑥 ) )  →  ( 𝑎  ⊆  𝑢  →  ( ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏  →  ¬  𝑋  =  ∪  ( 𝑥  ∩  𝑢 ) ) ) ) | 
						
							| 50 | 49 | impd | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  𝑢  ∈  𝒫  ( fi ‘ 𝑥 ) )  →  ( ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  →  ¬  𝑋  =  ∪  ( 𝑥  ∩  𝑢 ) ) ) | 
						
							| 51 | 50 | impr | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ¬  𝑋  =  ∪  ( 𝑥  ∩  𝑢 ) ) | 
						
							| 52 | 20 | unissi | ⊢ ∪  ( 𝑥  ∩  𝑢 )  ⊆  ∪  𝑥 | 
						
							| 53 |  | fiuni | ⊢ ( 𝑥  ∈  V  →  ∪  𝑥  =  ∪  ( fi ‘ 𝑥 ) ) | 
						
							| 54 | 53 | elv | ⊢ ∪  𝑥  =  ∪  ( fi ‘ 𝑥 ) | 
						
							| 55 |  | fibas | ⊢ ( fi ‘ 𝑥 )  ∈  TopBases | 
						
							| 56 |  | unitg | ⊢ ( ( fi ‘ 𝑥 )  ∈  TopBases  →  ∪  ( topGen ‘ ( fi ‘ 𝑥 ) )  =  ∪  ( fi ‘ 𝑥 ) ) | 
						
							| 57 | 55 56 | ax-mp | ⊢ ∪  ( topGen ‘ ( fi ‘ 𝑥 ) )  =  ∪  ( fi ‘ 𝑥 ) | 
						
							| 58 | 54 57 | eqtr4i | ⊢ ∪  𝑥  =  ∪  ( topGen ‘ ( fi ‘ 𝑥 ) ) | 
						
							| 59 |  | unieq | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ∪  𝐽  =  ∪  ( topGen ‘ ( fi ‘ 𝑥 ) ) ) | 
						
							| 60 | 58 59 | eqtr4id | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ∪  𝑥  =  ∪  𝐽 ) | 
						
							| 61 | 60 1 | eqtr4di | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ∪  𝑥  =  𝑋 ) | 
						
							| 62 | 61 | 3ad2ant1 | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  →  ∪  𝑥  =  𝑋 ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ∪  𝑥  =  𝑋 ) | 
						
							| 64 | 52 63 | sseqtrid | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ∪  ( 𝑥  ∩  𝑢 )  ⊆  𝑋 ) | 
						
							| 65 |  | eqcom | ⊢ ( 𝑋  =  ∪  ( 𝑥  ∩  𝑢 )  ↔  ∪  ( 𝑥  ∩  𝑢 )  =  𝑋 ) | 
						
							| 66 |  | eqss | ⊢ ( ∪  ( 𝑥  ∩  𝑢 )  =  𝑋  ↔  ( ∪  ( 𝑥  ∩  𝑢 )  ⊆  𝑋  ∧  𝑋  ⊆  ∪  ( 𝑥  ∩  𝑢 ) ) ) | 
						
							| 67 | 66 | baib | ⊢ ( ∪  ( 𝑥  ∩  𝑢 )  ⊆  𝑋  →  ( ∪  ( 𝑥  ∩  𝑢 )  =  𝑋  ↔  𝑋  ⊆  ∪  ( 𝑥  ∩  𝑢 ) ) ) | 
						
							| 68 | 65 67 | bitrid | ⊢ ( ∪  ( 𝑥  ∩  𝑢 )  ⊆  𝑋  →  ( 𝑋  =  ∪  ( 𝑥  ∩  𝑢 )  ↔  𝑋  ⊆  ∪  ( 𝑥  ∩  𝑢 ) ) ) | 
						
							| 69 | 64 68 | syl | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ( 𝑋  =  ∪  ( 𝑥  ∩  𝑢 )  ↔  𝑋  ⊆  ∪  ( 𝑥  ∩  𝑢 ) ) ) | 
						
							| 70 | 51 69 | mtbid | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ¬  𝑋  ⊆  ∪  ( 𝑥  ∩  𝑢 ) ) | 
						
							| 71 |  | sstr2 | ⊢ ( 𝑋  ⊆  ∪  𝑢  →  ( ∪  𝑢  ⊆  ∪  ( 𝑥  ∩  𝑢 )  →  𝑋  ⊆  ∪  ( 𝑥  ∩  𝑢 ) ) ) | 
						
							| 72 | 71 | con3rr3 | ⊢ ( ¬  𝑋  ⊆  ∪  ( 𝑥  ∩  𝑢 )  →  ( 𝑋  ⊆  ∪  𝑢  →  ¬  ∪  𝑢  ⊆  ∪  ( 𝑥  ∩  𝑢 ) ) ) | 
						
							| 73 | 70 72 | syl | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ( 𝑋  ⊆  ∪  𝑢  →  ¬  ∪  𝑢  ⊆  ∪  ( 𝑥  ∩  𝑢 ) ) ) | 
						
							| 74 |  | nss | ⊢ ( ¬  ∪  𝑢  ⊆  ∪  ( 𝑥  ∩  𝑢 )  ↔  ∃ 𝑦 ( 𝑦  ∈  ∪  𝑢  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) | 
						
							| 75 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  ∪  𝑢 ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 )  ↔  ∃ 𝑦 ( 𝑦  ∈  ∪  𝑢  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) | 
						
							| 76 | 74 75 | bitr4i | ⊢ ( ¬  ∪  𝑢  ⊆  ∪  ( 𝑥  ∩  𝑢 )  ↔  ∃ 𝑦  ∈  ∪  𝑢 ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) | 
						
							| 77 |  | eluni2 | ⊢ ( 𝑦  ∈  ∪  𝑢  ↔  ∃ 𝑤  ∈  𝑢 𝑦  ∈  𝑤 ) | 
						
							| 78 |  | elpwi | ⊢ ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  →  𝑢  ⊆  ( fi ‘ 𝑥 ) ) | 
						
							| 79 | 78 | sseld | ⊢ ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  →  ( 𝑤  ∈  𝑢  →  𝑤  ∈  ( fi ‘ 𝑥 ) ) ) | 
						
							| 80 | 79 | ad2antrl | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ( 𝑤  ∈  𝑢  →  𝑤  ∈  ( fi ‘ 𝑥 ) ) ) | 
						
							| 81 |  | elfi | ⊢ ( ( 𝑤  ∈  V  ∧  𝑥  ∈  V )  →  ( 𝑤  ∈  ( fi ‘ 𝑥 )  ↔  ∃ 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑤  =  ∩  𝑡 ) ) | 
						
							| 82 | 81 | el2v | ⊢ ( 𝑤  ∈  ( fi ‘ 𝑥 )  ↔  ∃ 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑤  =  ∩  𝑡 ) | 
						
							| 83 | 80 82 | imbitrdi | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ( 𝑤  ∈  𝑢  →  ∃ 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑤  =  ∩  𝑡 ) ) | 
						
							| 84 | 1 | alexsubALTlem3 | ⊢ ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  →  ∃ 𝑠  ∈  𝑡 ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) | 
						
							| 85 | 78 | adantr | ⊢ ( ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) )  →  𝑢  ⊆  ( fi ‘ 𝑥 ) ) | 
						
							| 86 | 85 | ad4antlr | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  𝑢  ⊆  ( fi ‘ 𝑥 ) ) | 
						
							| 87 |  | ssfii | ⊢ ( 𝑥  ∈  V  →  𝑥  ⊆  ( fi ‘ 𝑥 ) ) | 
						
							| 88 | 87 | elv | ⊢ 𝑥  ⊆  ( fi ‘ 𝑥 ) | 
						
							| 89 |  | elinel1 | ⊢ ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  →  𝑡  ∈  𝒫  𝑥 ) | 
						
							| 90 | 89 | elpwid | ⊢ ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  →  𝑡  ⊆  𝑥 ) | 
						
							| 91 | 90 | ad2antrr | ⊢ ( ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) )  →  𝑡  ⊆  𝑥 ) | 
						
							| 92 | 91 | ad2antlr | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  𝑡  ⊆  𝑥 ) | 
						
							| 93 |  | simprl | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  𝑠  ∈  𝑡 ) | 
						
							| 94 | 92 93 | sseldd | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  𝑠  ∈  𝑥 ) | 
						
							| 95 | 88 94 | sselid | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  𝑠  ∈  ( fi ‘ 𝑥 ) ) | 
						
							| 96 | 95 | snssd | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  { 𝑠 }  ⊆  ( fi ‘ 𝑥 ) ) | 
						
							| 97 | 86 96 | unssd | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  ( 𝑢  ∪  { 𝑠 } )  ⊆  ( fi ‘ 𝑥 ) ) | 
						
							| 98 |  | fvex | ⊢ ( fi ‘ 𝑥 )  ∈  V | 
						
							| 99 | 98 | elpw2 | ⊢ ( ( 𝑢  ∪  { 𝑠 } )  ∈  𝒫  ( fi ‘ 𝑥 )  ↔  ( 𝑢  ∪  { 𝑠 } )  ⊆  ( fi ‘ 𝑥 ) ) | 
						
							| 100 | 97 99 | sylibr | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  ( 𝑢  ∪  { 𝑠 } )  ∈  𝒫  ( fi ‘ 𝑥 ) ) | 
						
							| 101 |  | simprl | ⊢ ( ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) )  →  𝑎  ⊆  𝑢 ) | 
						
							| 102 | 101 | ad4antlr | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  𝑎  ⊆  𝑢 ) | 
						
							| 103 |  | ssun1 | ⊢ 𝑢  ⊆  ( 𝑢  ∪  { 𝑠 } ) | 
						
							| 104 | 102 103 | sstrdi | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  𝑎  ⊆  ( 𝑢  ∪  { 𝑠 } ) ) | 
						
							| 105 |  | unieq | ⊢ ( 𝑛  =  𝑏  →  ∪  𝑛  =  ∪  𝑏 ) | 
						
							| 106 | 105 | eqeq2d | ⊢ ( 𝑛  =  𝑏  →  ( 𝑋  =  ∪  𝑛  ↔  𝑋  =  ∪  𝑏 ) ) | 
						
							| 107 | 106 | notbid | ⊢ ( 𝑛  =  𝑏  →  ( ¬  𝑋  =  ∪  𝑛  ↔  ¬  𝑋  =  ∪  𝑏 ) ) | 
						
							| 108 | 107 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛  ↔  ∀ 𝑏  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) | 
						
							| 109 | 108 | biimpi | ⊢ ( ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛  →  ∀ 𝑏  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) | 
						
							| 110 | 109 | ad2antll | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  ∀ 𝑏  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) | 
						
							| 111 | 100 104 110 | jca32 | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  ( ( 𝑢  ∪  { 𝑠 } )  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  ( 𝑢  ∪  { 𝑠 } )  ∧  ∀ 𝑏  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 112 |  | sseq2 | ⊢ ( 𝑧  =  ( 𝑢  ∪  { 𝑠 } )  →  ( 𝑎  ⊆  𝑧  ↔  𝑎  ⊆  ( 𝑢  ∪  { 𝑠 } ) ) ) | 
						
							| 113 |  | pweq | ⊢ ( 𝑧  =  ( 𝑢  ∪  { 𝑠 } )  →  𝒫  𝑧  =  𝒫  ( 𝑢  ∪  { 𝑠 } ) ) | 
						
							| 114 | 113 | ineq1d | ⊢ ( 𝑧  =  ( 𝑢  ∪  { 𝑠 } )  →  ( 𝒫  𝑧  ∩  Fin )  =  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ) | 
						
							| 115 | 114 | raleqdv | ⊢ ( 𝑧  =  ( 𝑢  ∪  { 𝑠 } )  →  ( ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏  ↔  ∀ 𝑏  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) | 
						
							| 116 | 112 115 | anbi12d | ⊢ ( 𝑧  =  ( 𝑢  ∪  { 𝑠 } )  →  ( ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  ↔  ( 𝑎  ⊆  ( 𝑢  ∪  { 𝑠 } )  ∧  ∀ 𝑏  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 117 | 116 | elrab | ⊢ ( ( 𝑢  ∪  { 𝑠 } )  ∈  { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ↔  ( ( 𝑢  ∪  { 𝑠 } )  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  ( 𝑢  ∪  { 𝑠 } )  ∧  ∀ 𝑏  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 118 | 111 117 | sylibr | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  ( 𝑢  ∪  { 𝑠 } )  ∈  { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) } ) | 
						
							| 119 |  | elun1 | ⊢ ( ( 𝑢  ∪  { 𝑠 } )  ∈  { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  →  ( 𝑢  ∪  { 𝑠 } )  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ) | 
						
							| 120 | 118 119 | syl | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  ( 𝑢  ∪  { 𝑠 } )  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ) | 
						
							| 121 |  | vsnid | ⊢ 𝑠  ∈  { 𝑠 } | 
						
							| 122 |  | elun2 | ⊢ ( 𝑠  ∈  { 𝑠 }  →  𝑠  ∈  ( 𝑢  ∪  { 𝑠 } ) ) | 
						
							| 123 | 121 122 | ax-mp | ⊢ 𝑠  ∈  ( 𝑢  ∪  { 𝑠 } ) | 
						
							| 124 |  | intss1 | ⊢ ( 𝑠  ∈  𝑡  →  ∩  𝑡  ⊆  𝑠 ) | 
						
							| 125 |  | sseq1 | ⊢ ( 𝑤  =  ∩  𝑡  →  ( 𝑤  ⊆  𝑠  ↔  ∩  𝑡  ⊆  𝑠 ) ) | 
						
							| 126 | 124 125 | syl5ibrcom | ⊢ ( 𝑠  ∈  𝑡  →  ( 𝑤  =  ∩  𝑡  →  𝑤  ⊆  𝑠 ) ) | 
						
							| 127 | 126 | impcom | ⊢ ( ( 𝑤  =  ∩  𝑡  ∧  𝑠  ∈  𝑡 )  →  𝑤  ⊆  𝑠 ) | 
						
							| 128 | 127 | ad4ant24 | ⊢ ( ( ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  𝑦  ∈  𝑤 )  ∧  𝑠  ∈  𝑡 )  →  𝑤  ⊆  𝑠 ) | 
						
							| 129 | 128 | adantl | ⊢ ( ( 𝑤  ∈  𝑢  ∧  ( ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  𝑦  ∈  𝑤 )  ∧  𝑠  ∈  𝑡 ) )  →  𝑤  ⊆  𝑠 ) | 
						
							| 130 | 129 | adantrrr | ⊢ ( ( 𝑤  ∈  𝑢  ∧  ( ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  𝑦  ∈  𝑤 )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) ) )  →  𝑤  ⊆  𝑠 ) | 
						
							| 131 | 130 | adantll | ⊢ ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  𝑦  ∈  𝑤 )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) ) )  →  𝑤  ⊆  𝑠 ) | 
						
							| 132 |  | simprlr | ⊢ ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  𝑦  ∈  𝑤 )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) ) )  →  𝑦  ∈  𝑤 ) | 
						
							| 133 | 131 132 | sseldd | ⊢ ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  𝑦  ∈  𝑤 )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) ) )  →  𝑦  ∈  𝑠 ) | 
						
							| 134 | 90 | ad2antrr | ⊢ ( ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  𝑦  ∈  𝑤 )  →  𝑡  ⊆  𝑥 ) | 
						
							| 135 | 134 | ad2antrl | ⊢ ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  𝑦  ∈  𝑤 )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) ) )  →  𝑡  ⊆  𝑥 ) | 
						
							| 136 |  | simprrl | ⊢ ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  𝑦  ∈  𝑤 )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) ) )  →  𝑠  ∈  𝑡 ) | 
						
							| 137 | 135 136 | sseldd | ⊢ ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  𝑦  ∈  𝑤 )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) ) )  →  𝑠  ∈  𝑥 ) | 
						
							| 138 |  | elin | ⊢ ( 𝑠  ∈  ( 𝑥  ∩  𝑢 )  ↔  ( 𝑠  ∈  𝑥  ∧  𝑠  ∈  𝑢 ) ) | 
						
							| 139 |  | elunii | ⊢ ( ( 𝑦  ∈  𝑠  ∧  𝑠  ∈  ( 𝑥  ∩  𝑢 ) )  →  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) | 
						
							| 140 | 139 | ex | ⊢ ( 𝑦  ∈  𝑠  →  ( 𝑠  ∈  ( 𝑥  ∩  𝑢 )  →  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) | 
						
							| 141 | 138 140 | biimtrrid | ⊢ ( 𝑦  ∈  𝑠  →  ( ( 𝑠  ∈  𝑥  ∧  𝑠  ∈  𝑢 )  →  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) | 
						
							| 142 | 141 | expd | ⊢ ( 𝑦  ∈  𝑠  →  ( 𝑠  ∈  𝑥  →  ( 𝑠  ∈  𝑢  →  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) ) | 
						
							| 143 | 133 137 142 | sylc | ⊢ ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  𝑦  ∈  𝑤 )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) ) )  →  ( 𝑠  ∈  𝑢  →  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) | 
						
							| 144 | 143 | con3d | ⊢ ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  𝑦  ∈  𝑤 )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) ) )  →  ( ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 )  →  ¬  𝑠  ∈  𝑢 ) ) | 
						
							| 145 | 144 | expr | ⊢ ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  𝑦  ∈  𝑤 ) )  →  ( ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 )  →  ( ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 )  →  ¬  𝑠  ∈  𝑢 ) ) ) | 
						
							| 146 | 145 | com23 | ⊢ ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  𝑦  ∈  𝑤 ) )  →  ( ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 )  →  ( ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 )  →  ¬  𝑠  ∈  𝑢 ) ) ) | 
						
							| 147 | 146 | exp32 | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  →  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  →  ( 𝑦  ∈  𝑤  →  ( ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 )  →  ( ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 )  →  ¬  𝑠  ∈  𝑢 ) ) ) ) ) | 
						
							| 148 | 147 | imp55 | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  ¬  𝑠  ∈  𝑢 ) | 
						
							| 149 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 150 |  | eleq1w | ⊢ ( 𝑣  =  𝑠  →  ( 𝑣  ∈  ( 𝑢  ∪  { 𝑠 } )  ↔  𝑠  ∈  ( 𝑢  ∪  { 𝑠 } ) ) ) | 
						
							| 151 |  | elequ1 | ⊢ ( 𝑣  =  𝑠  →  ( 𝑣  ∈  𝑢  ↔  𝑠  ∈  𝑢 ) ) | 
						
							| 152 | 151 | notbid | ⊢ ( 𝑣  =  𝑠  →  ( ¬  𝑣  ∈  𝑢  ↔  ¬  𝑠  ∈  𝑢 ) ) | 
						
							| 153 | 150 152 | anbi12d | ⊢ ( 𝑣  =  𝑠  →  ( ( 𝑣  ∈  ( 𝑢  ∪  { 𝑠 } )  ∧  ¬  𝑣  ∈  𝑢 )  ↔  ( 𝑠  ∈  ( 𝑢  ∪  { 𝑠 } )  ∧  ¬  𝑠  ∈  𝑢 ) ) ) | 
						
							| 154 | 149 153 | spcev | ⊢ ( ( 𝑠  ∈  ( 𝑢  ∪  { 𝑠 } )  ∧  ¬  𝑠  ∈  𝑢 )  →  ∃ 𝑣 ( 𝑣  ∈  ( 𝑢  ∪  { 𝑠 } )  ∧  ¬  𝑣  ∈  𝑢 ) ) | 
						
							| 155 | 123 148 154 | sylancr | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  ∃ 𝑣 ( 𝑣  ∈  ( 𝑢  ∪  { 𝑠 } )  ∧  ¬  𝑣  ∈  𝑢 ) ) | 
						
							| 156 |  | nss | ⊢ ( ¬  ( 𝑢  ∪  { 𝑠 } )  ⊆  𝑢  ↔  ∃ 𝑣 ( 𝑣  ∈  ( 𝑢  ∪  { 𝑠 } )  ∧  ¬  𝑣  ∈  𝑢 ) ) | 
						
							| 157 | 155 156 | sylibr | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  ¬  ( 𝑢  ∪  { 𝑠 } )  ⊆  𝑢 ) | 
						
							| 158 |  | eqimss2 | ⊢ ( 𝑢  =  ( 𝑢  ∪  { 𝑠 } )  →  ( 𝑢  ∪  { 𝑠 } )  ⊆  𝑢 ) | 
						
							| 159 | 158 | necon3bi | ⊢ ( ¬  ( 𝑢  ∪  { 𝑠 } )  ⊆  𝑢  →  𝑢  ≠  ( 𝑢  ∪  { 𝑠 } ) ) | 
						
							| 160 | 157 159 | syl | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  𝑢  ≠  ( 𝑢  ∪  { 𝑠 } ) ) | 
						
							| 161 | 160 103 | jctil | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  ( 𝑢  ⊆  ( 𝑢  ∪  { 𝑠 } )  ∧  𝑢  ≠  ( 𝑢  ∪  { 𝑠 } ) ) ) | 
						
							| 162 |  | df-pss | ⊢ ( 𝑢  ⊊  ( 𝑢  ∪  { 𝑠 } )  ↔  ( 𝑢  ⊆  ( 𝑢  ∪  { 𝑠 } )  ∧  𝑢  ≠  ( 𝑢  ∪  { 𝑠 } ) ) ) | 
						
							| 163 | 161 162 | sylibr | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  𝑢  ⊊  ( 𝑢  ∪  { 𝑠 } ) ) | 
						
							| 164 |  | psseq2 | ⊢ ( 𝑣  =  ( 𝑢  ∪  { 𝑠 } )  →  ( 𝑢  ⊊  𝑣  ↔  𝑢  ⊊  ( 𝑢  ∪  { 𝑠 } ) ) ) | 
						
							| 165 | 164 | rspcev | ⊢ ( ( ( 𝑢  ∪  { 𝑠 } )  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } )  ∧  𝑢  ⊊  ( 𝑢  ∪  { 𝑠 } ) )  →  ∃ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) 𝑢  ⊊  𝑣 ) | 
						
							| 166 | 120 163 165 | syl2anc | ⊢ ( ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  ∧  ( 𝑠  ∈  𝑡  ∧  ∀ 𝑛  ∈  ( 𝒫  ( 𝑢  ∪  { 𝑠 } )  ∩  Fin ) ¬  𝑋  =  ∪  𝑛 ) )  →  ∃ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) 𝑢  ⊊  𝑣 ) | 
						
							| 167 | 84 166 | rexlimddv | ⊢ ( ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  ∧  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  ∧  ( 𝑦  ∈  𝑤  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 ) ) ) )  →  ∃ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) 𝑢  ⊊  𝑣 ) | 
						
							| 168 | 167 | exp45 | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  →  ( ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  ∧  𝑤  =  ∩  𝑡 )  →  ( 𝑦  ∈  𝑤  →  ( ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 )  →  ∃ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) 𝑢  ⊊  𝑣 ) ) ) ) | 
						
							| 169 | 168 | expd | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  →  ( 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin )  →  ( 𝑤  =  ∩  𝑡  →  ( 𝑦  ∈  𝑤  →  ( ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 )  →  ∃ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) 𝑢  ⊊  𝑣 ) ) ) ) ) | 
						
							| 170 | 169 | rexlimdv | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  ∧  𝑤  ∈  𝑢 )  →  ( ∃ 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑤  =  ∩  𝑡  →  ( 𝑦  ∈  𝑤  →  ( ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 )  →  ∃ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) 𝑢  ⊊  𝑣 ) ) ) ) | 
						
							| 171 | 170 | ex | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ( 𝑤  ∈  𝑢  →  ( ∃ 𝑡  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑤  =  ∩  𝑡  →  ( 𝑦  ∈  𝑤  →  ( ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 )  →  ∃ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) 𝑢  ⊊  𝑣 ) ) ) ) ) | 
						
							| 172 | 83 171 | mpdd | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ( 𝑤  ∈  𝑢  →  ( 𝑦  ∈  𝑤  →  ( ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 )  →  ∃ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) 𝑢  ⊊  𝑣 ) ) ) ) | 
						
							| 173 | 172 | rexlimdv | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ( ∃ 𝑤  ∈  𝑢 𝑦  ∈  𝑤  →  ( ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 )  →  ∃ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) 𝑢  ⊊  𝑣 ) ) ) | 
						
							| 174 | 77 173 | biimtrid | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ( 𝑦  ∈  ∪  𝑢  →  ( ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 )  →  ∃ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) 𝑢  ⊊  𝑣 ) ) ) | 
						
							| 175 | 174 | rexlimdv | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ( ∃ 𝑦  ∈  ∪  𝑢 ¬  𝑦  ∈  ∪  ( 𝑥  ∩  𝑢 )  →  ∃ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) 𝑢  ⊊  𝑣 ) ) | 
						
							| 176 | 76 175 | biimtrid | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ( ¬  ∪  𝑢  ⊆  ∪  ( 𝑥  ∩  𝑢 )  →  ∃ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) 𝑢  ⊊  𝑣 ) ) | 
						
							| 177 | 18 73 176 | 3syld | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ( 𝑋  =  ∪  𝑎  →  ∃ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) 𝑢  ⊊  𝑣 ) ) | 
						
							| 178 | 177 | con3d | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ( ¬  ∃ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) 𝑢  ⊊  𝑣  →  ¬  𝑋  =  ∪  𝑎 ) ) | 
						
							| 179 | 14 178 | biimtrid | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) )  →  ( ∀ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ¬  𝑢  ⊊  𝑣  →  ¬  𝑋  =  ∪  𝑎 ) ) | 
						
							| 180 | 179 | ex | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  →  ( ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) )  →  ( ∀ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ¬  𝑢  ⊊  𝑣  →  ¬  𝑋  =  ∪  𝑎 ) ) ) | 
						
							| 181 | 180 | adantr | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  →  ( ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) )  →  ( ∀ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ¬  𝑢  ⊊  𝑣  →  ¬  𝑋  =  ∪  𝑎 ) ) ) | 
						
							| 182 |  | ssun1 | ⊢ { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ⊆  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) | 
						
							| 183 |  | eqimss2 | ⊢ ( 𝑧  =  𝑎  →  𝑎  ⊆  𝑧 ) | 
						
							| 184 | 183 | biantrurd | ⊢ ( 𝑧  =  𝑎  →  ( ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏  ↔  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) ) | 
						
							| 185 |  | pweq | ⊢ ( 𝑧  =  𝑎  →  𝒫  𝑧  =  𝒫  𝑎 ) | 
						
							| 186 | 185 | ineq1d | ⊢ ( 𝑧  =  𝑎  →  ( 𝒫  𝑧  ∩  Fin )  =  ( 𝒫  𝑎  ∩  Fin ) ) | 
						
							| 187 | 186 | raleqdv | ⊢ ( 𝑧  =  𝑎  →  ( ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏  ↔  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) | 
						
							| 188 | 184 187 | bitr3d | ⊢ ( 𝑧  =  𝑎  →  ( ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  ↔  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) ) | 
						
							| 189 |  | simpll3 | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  ∧  𝑢  =  ∅ )  →  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) ) | 
						
							| 190 |  | simplr | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  ∧  𝑢  =  ∅ )  →  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) | 
						
							| 191 | 188 189 190 | elrabd | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  ∧  𝑢  =  ∅ )  →  𝑎  ∈  { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) } ) | 
						
							| 192 | 182 191 | sselid | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  ∧  𝑢  =  ∅ )  →  𝑎  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ) | 
						
							| 193 |  | psseq2 | ⊢ ( 𝑣  =  𝑎  →  ( 𝑢  ⊊  𝑣  ↔  𝑢  ⊊  𝑎 ) ) | 
						
							| 194 | 193 | notbid | ⊢ ( 𝑣  =  𝑎  →  ( ¬  𝑢  ⊊  𝑣  ↔  ¬  𝑢  ⊊  𝑎 ) ) | 
						
							| 195 | 194 | rspcv | ⊢ ( 𝑎  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } )  →  ( ∀ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ¬  𝑢  ⊊  𝑣  →  ¬  𝑢  ⊊  𝑎 ) ) | 
						
							| 196 | 192 195 | syl | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  ∧  𝑢  =  ∅ )  →  ( ∀ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ¬  𝑢  ⊊  𝑣  →  ¬  𝑢  ⊊  𝑎 ) ) | 
						
							| 197 |  | id | ⊢ ( 𝑎  =  ∅  →  𝑎  =  ∅ ) | 
						
							| 198 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝑎 | 
						
							| 199 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 200 | 198 199 | elini | ⊢ ∅  ∈  ( 𝒫  𝑎  ∩  Fin ) | 
						
							| 201 | 197 200 | eqeltrdi | ⊢ ( 𝑎  =  ∅  →  𝑎  ∈  ( 𝒫  𝑎  ∩  Fin ) ) | 
						
							| 202 |  | unieq | ⊢ ( 𝑏  =  𝑎  →  ∪  𝑏  =  ∪  𝑎 ) | 
						
							| 203 | 202 | eqeq2d | ⊢ ( 𝑏  =  𝑎  →  ( 𝑋  =  ∪  𝑏  ↔  𝑋  =  ∪  𝑎 ) ) | 
						
							| 204 | 203 | notbid | ⊢ ( 𝑏  =  𝑎  →  ( ¬  𝑋  =  ∪  𝑏  ↔  ¬  𝑋  =  ∪  𝑎 ) ) | 
						
							| 205 | 204 | rspccv | ⊢ ( ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏  →  ( 𝑎  ∈  ( 𝒫  𝑎  ∩  Fin )  →  ¬  𝑋  =  ∪  𝑎 ) ) | 
						
							| 206 | 201 205 | syl5 | ⊢ ( ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏  →  ( 𝑎  =  ∅  →  ¬  𝑋  =  ∪  𝑎 ) ) | 
						
							| 207 | 206 | necon2ad | ⊢ ( ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏  →  ( 𝑋  =  ∪  𝑎  →  𝑎  ≠  ∅ ) ) | 
						
							| 208 | 207 | ad2antlr | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  ∧  𝑢  =  ∅ )  →  ( 𝑋  =  ∪  𝑎  →  𝑎  ≠  ∅ ) ) | 
						
							| 209 |  | psseq1 | ⊢ ( 𝑢  =  ∅  →  ( 𝑢  ⊊  𝑎  ↔  ∅  ⊊  𝑎 ) ) | 
						
							| 210 | 209 | adantl | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  ∧  𝑢  =  ∅ )  →  ( 𝑢  ⊊  𝑎  ↔  ∅  ⊊  𝑎 ) ) | 
						
							| 211 |  | 0pss | ⊢ ( ∅  ⊊  𝑎  ↔  𝑎  ≠  ∅ ) | 
						
							| 212 | 210 211 | bitrdi | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  ∧  𝑢  =  ∅ )  →  ( 𝑢  ⊊  𝑎  ↔  𝑎  ≠  ∅ ) ) | 
						
							| 213 | 208 212 | sylibrd | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  ∧  𝑢  =  ∅ )  →  ( 𝑋  =  ∪  𝑎  →  𝑢  ⊊  𝑎 ) ) | 
						
							| 214 | 196 213 | nsyld | ⊢ ( ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  ∧  𝑢  =  ∅ )  →  ( ∀ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ¬  𝑢  ⊊  𝑣  →  ¬  𝑋  =  ∪  𝑎 ) ) | 
						
							| 215 | 214 | ex | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  →  ( 𝑢  =  ∅  →  ( ∀ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ¬  𝑢  ⊊  𝑣  →  ¬  𝑋  =  ∪  𝑎 ) ) ) | 
						
							| 216 | 181 215 | jaod | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  →  ( ( ( 𝑢  ∈  𝒫  ( fi ‘ 𝑥 )  ∧  ( 𝑎  ⊆  𝑢  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑢  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) )  ∨  𝑢  =  ∅ )  →  ( ∀ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ¬  𝑢  ⊊  𝑣  →  ¬  𝑋  =  ∪  𝑎 ) ) ) | 
						
							| 217 | 13 216 | biimtrid | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  →  ( 𝑢  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } )  →  ( ∀ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ¬  𝑢  ⊊  𝑣  →  ¬  𝑋  =  ∪  𝑎 ) ) ) | 
						
							| 218 | 217 | rexlimdv | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  →  ( ∃ 𝑢  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ∀ 𝑣  ∈  ( { 𝑧  ∈  𝒫  ( fi ‘ 𝑥 )  ∣  ( 𝑎  ⊆  𝑧  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑧  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 ) }  ∪  { ∅ } ) ¬  𝑢  ⊊  𝑣  →  ¬  𝑋  =  ∪  𝑎 ) ) | 
						
							| 219 | 3 218 | mpd | ⊢ ( ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏 )  →  ¬  𝑋  =  ∪  𝑎 ) | 
						
							| 220 | 219 | ex | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  →  ( ∀ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) ¬  𝑋  =  ∪  𝑏  →  ¬  𝑋  =  ∪  𝑎 ) ) | 
						
							| 221 | 2 220 | biimtrrid | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  →  ( ¬  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏  →  ¬  𝑋  =  ∪  𝑎 ) ) | 
						
							| 222 | 221 | con4d | ⊢ ( ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  ∧  ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  ∧  𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) )  →  ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) | 
						
							| 223 | 222 | 3exp | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ( ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  →  ( 𝑎  ∈  𝒫  ( fi ‘ 𝑥 )  →  ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) ) | 
						
							| 224 | 223 | ralrimdv | ⊢ ( 𝐽  =  ( topGen ‘ ( fi ‘ 𝑥 ) )  →  ( ∀ 𝑐  ∈  𝒫  𝑥 ( 𝑋  =  ∪  𝑐  →  ∃ 𝑑  ∈  ( 𝒫  𝑐  ∩  Fin ) 𝑋  =  ∪  𝑑 )  →  ∀ 𝑎  ∈  𝒫  ( fi ‘ 𝑥 ) ( 𝑋  =  ∪  𝑎  →  ∃ 𝑏  ∈  ( 𝒫  𝑎  ∩  Fin ) 𝑋  =  ∪  𝑏 ) ) ) |