| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  ( topGen ‘ ( fi ‘ 𝐵 ) ) | 
						
							| 2 | 1 | iscmp | ⊢ ( ( topGen ‘ ( fi ‘ 𝐵 ) )  ∈  Comp  ↔  ( ( topGen ‘ ( fi ‘ 𝐵 ) )  ∈  Top  ∧  ∀ 𝑥  ∈  𝒫  ( topGen ‘ ( fi ‘ 𝐵 ) ) ( ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  𝑦 ) ) ) | 
						
							| 3 | 2 | simprbi | ⊢ ( ( topGen ‘ ( fi ‘ 𝐵 ) )  ∈  Comp  →  ∀ 𝑥  ∈  𝒫  ( topGen ‘ ( fi ‘ 𝐵 ) ) ( ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  𝑦 ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  𝑋  =  ∪  𝐵 ) | 
						
							| 5 |  | elex | ⊢ ( 𝑋  ∈  UFL  →  𝑋  ∈  V ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  𝑋  ∈  V ) | 
						
							| 7 | 4 6 | eqeltrrd | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  ∪  𝐵  ∈  V ) | 
						
							| 8 |  | uniexb | ⊢ ( 𝐵  ∈  V  ↔  ∪  𝐵  ∈  V ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 10 |  | fiuni | ⊢ ( 𝐵  ∈  V  →  ∪  𝐵  =  ∪  ( fi ‘ 𝐵 ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  ∪  𝐵  =  ∪  ( fi ‘ 𝐵 ) ) | 
						
							| 12 |  | fibas | ⊢ ( fi ‘ 𝐵 )  ∈  TopBases | 
						
							| 13 |  | unitg | ⊢ ( ( fi ‘ 𝐵 )  ∈  TopBases  →  ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  ( fi ‘ 𝐵 ) ) | 
						
							| 14 | 12 13 | mp1i | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  ( fi ‘ 𝐵 ) ) | 
						
							| 15 | 11 4 14 | 3eqtr4d | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  𝑋  =  ∪  ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | 
						
							| 16 | 15 | eqeq1d | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  ( 𝑋  =  ∪  𝑥  ↔  ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  𝑥 ) ) | 
						
							| 17 | 15 | eqeq1d | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  ( 𝑋  =  ∪  𝑦  ↔  ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  𝑦 ) ) | 
						
							| 18 | 17 | rexbidv | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  ( ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦  ↔  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  𝑦 ) ) | 
						
							| 19 | 16 18 | imbi12d | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  ( ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 )  ↔  ( ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  𝑦 ) ) ) | 
						
							| 20 | 19 | ralbidv | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  ( ∀ 𝑥  ∈  𝒫  ( topGen ‘ ( fi ‘ 𝐵 ) ) ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 )  ↔  ∀ 𝑥  ∈  𝒫  ( topGen ‘ ( fi ‘ 𝐵 ) ) ( ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  𝑦 ) ) ) | 
						
							| 21 |  | ssfii | ⊢ ( 𝐵  ∈  V  →  𝐵  ⊆  ( fi ‘ 𝐵 ) ) | 
						
							| 22 | 9 21 | syl | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  𝐵  ⊆  ( fi ‘ 𝐵 ) ) | 
						
							| 23 |  | bastg | ⊢ ( ( fi ‘ 𝐵 )  ∈  TopBases  →  ( fi ‘ 𝐵 )  ⊆  ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | 
						
							| 24 | 12 23 | ax-mp | ⊢ ( fi ‘ 𝐵 )  ⊆  ( topGen ‘ ( fi ‘ 𝐵 ) ) | 
						
							| 25 | 22 24 | sstrdi | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  𝐵  ⊆  ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | 
						
							| 26 | 25 | sspwd | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  𝒫  𝐵  ⊆  𝒫  ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | 
						
							| 27 |  | ssralv | ⊢ ( 𝒫  𝐵  ⊆  𝒫  ( topGen ‘ ( fi ‘ 𝐵 ) )  →  ( ∀ 𝑥  ∈  𝒫  ( topGen ‘ ( fi ‘ 𝐵 ) ) ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 )  →  ∀ 𝑥  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  ( ∀ 𝑥  ∈  𝒫  ( topGen ‘ ( fi ‘ 𝐵 ) ) ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 )  →  ∀ 𝑥  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) ) ) | 
						
							| 29 | 20 28 | sylbird | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  ( ∀ 𝑥  ∈  𝒫  ( topGen ‘ ( fi ‘ 𝐵 ) ) ( ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) ∪  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ∪  𝑦 )  →  ∀ 𝑥  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) ) ) | 
						
							| 30 | 3 29 | syl5 | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  ( ( topGen ‘ ( fi ‘ 𝐵 ) )  ∈  Comp  →  ∀ 𝑥  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) ) ) | 
						
							| 31 |  | simpll | ⊢ ( ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  ∧  ∀ 𝑥  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) )  →  𝑋  ∈  UFL ) | 
						
							| 32 |  | simplr | ⊢ ( ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  ∧  ∀ 𝑥  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) )  →  𝑋  =  ∪  𝐵 ) | 
						
							| 33 |  | eqidd | ⊢ ( ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  ∧  ∀ 𝑥  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) )  →  ( topGen ‘ ( fi ‘ 𝐵 ) )  =  ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | 
						
							| 34 |  | velpw | ⊢ ( 𝑧  ∈  𝒫  𝐵  ↔  𝑧  ⊆  𝐵 ) | 
						
							| 35 |  | unieq | ⊢ ( 𝑥  =  𝑧  →  ∪  𝑥  =  ∪  𝑧 ) | 
						
							| 36 | 35 | eqeq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝑋  =  ∪  𝑥  ↔  𝑋  =  ∪  𝑧 ) ) | 
						
							| 37 |  | pweq | ⊢ ( 𝑥  =  𝑧  →  𝒫  𝑥  =  𝒫  𝑧 ) | 
						
							| 38 | 37 | ineq1d | ⊢ ( 𝑥  =  𝑧  →  ( 𝒫  𝑥  ∩  Fin )  =  ( 𝒫  𝑧  ∩  Fin ) ) | 
						
							| 39 | 38 | rexeqdv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦  ↔  ∃ 𝑦  ∈  ( 𝒫  𝑧  ∩  Fin ) 𝑋  =  ∪  𝑦 ) ) | 
						
							| 40 | 36 39 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 )  ↔  ( 𝑋  =  ∪  𝑧  →  ∃ 𝑦  ∈  ( 𝒫  𝑧  ∩  Fin ) 𝑋  =  ∪  𝑦 ) ) ) | 
						
							| 41 | 40 | rspccv | ⊢ ( ∀ 𝑥  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 )  →  ( 𝑧  ∈  𝒫  𝐵  →  ( 𝑋  =  ∪  𝑧  →  ∃ 𝑦  ∈  ( 𝒫  𝑧  ∩  Fin ) 𝑋  =  ∪  𝑦 ) ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  ∧  ∀ 𝑥  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) )  →  ( 𝑧  ∈  𝒫  𝐵  →  ( 𝑋  =  ∪  𝑧  →  ∃ 𝑦  ∈  ( 𝒫  𝑧  ∩  Fin ) 𝑋  =  ∪  𝑦 ) ) ) | 
						
							| 43 | 34 42 | biimtrrid | ⊢ ( ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  ∧  ∀ 𝑥  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) )  →  ( 𝑧  ⊆  𝐵  →  ( 𝑋  =  ∪  𝑧  →  ∃ 𝑦  ∈  ( 𝒫  𝑧  ∩  Fin ) 𝑋  =  ∪  𝑦 ) ) ) | 
						
							| 44 | 43 | imp32 | ⊢ ( ( ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  ∧  ∀ 𝑥  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) )  ∧  ( 𝑧  ⊆  𝐵  ∧  𝑋  =  ∪  𝑧 ) )  →  ∃ 𝑦  ∈  ( 𝒫  𝑧  ∩  Fin ) 𝑋  =  ∪  𝑦 ) | 
						
							| 45 |  | unieq | ⊢ ( 𝑦  =  𝑤  →  ∪  𝑦  =  ∪  𝑤 ) | 
						
							| 46 | 45 | eqeq2d | ⊢ ( 𝑦  =  𝑤  →  ( 𝑋  =  ∪  𝑦  ↔  𝑋  =  ∪  𝑤 ) ) | 
						
							| 47 | 46 | cbvrexvw | ⊢ ( ∃ 𝑦  ∈  ( 𝒫  𝑧  ∩  Fin ) 𝑋  =  ∪  𝑦  ↔  ∃ 𝑤  ∈  ( 𝒫  𝑧  ∩  Fin ) 𝑋  =  ∪  𝑤 ) | 
						
							| 48 | 44 47 | sylib | ⊢ ( ( ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  ∧  ∀ 𝑥  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) )  ∧  ( 𝑧  ⊆  𝐵  ∧  𝑋  =  ∪  𝑧 ) )  →  ∃ 𝑤  ∈  ( 𝒫  𝑧  ∩  Fin ) 𝑋  =  ∪  𝑤 ) | 
						
							| 49 | 31 32 33 48 | alexsub | ⊢ ( ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  ∧  ∀ 𝑥  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) )  →  ( topGen ‘ ( fi ‘ 𝐵 ) )  ∈  Comp ) | 
						
							| 50 | 49 | ex | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  ( ∀ 𝑥  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 )  →  ( topGen ‘ ( fi ‘ 𝐵 ) )  ∈  Comp ) ) | 
						
							| 51 | 30 50 | impbid | ⊢ ( ( 𝑋  ∈  UFL  ∧  𝑋  =  ∪  𝐵 )  →  ( ( topGen ‘ ( fi ‘ 𝐵 ) )  ∈  Comp  ↔  ∀ 𝑥  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) ) ) |